Cargando…
Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles
In silico models to predict which tumors will respond to a given drug are necessary for Precision Oncology. However, predictive models are only available for a handful of cases (each case being a given drug acting on tumors of a specific cancer type). A way to generate predictive models for the rema...
Autores principales: | Naulaerts, Stefan, Menden, Michael P., Ballester, Pedro J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356608/ https://www.ncbi.nlm.nih.gov/pubmed/32604779 http://dx.doi.org/10.3390/biom10060963 |
Ejemplares similares
-
Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours
por: Naulaerts, Stefan, et al.
Publicado: (2017) -
Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space
por: Peón, Antonio, et al.
Publicado: (2017) -
Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles
por: Nguyen, Linh C., et al.
Publicado: (2021) -
Predicting Synergism of Cancer Drug Combinations Using NCI-ALMANAC Data
por: Sidorov, Pavel, et al.
Publicado: (2019) -
A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera
por: Fabres, Pastor Jullian, et al.
Publicado: (2017)