Cargando…

Evaluation of Innate Immune Mediators Related to Respiratory Viruses in the Lung of Stable COPD Patients

Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods:...

Descripción completa

Detalles Bibliográficos
Autores principales: D’Anna, Silvestro E., Maniscalco, Mauro, Carriero, Vitina, Gnemmi, Isabella, Caramori, Gaetano, Nucera, Francesco, Righi, Luisella, Brun, Paola, Balbi, Bruno, Adcock, Ian M, Stella, Maria Grazia, Ricciardolo, Fabio L.M., Di Stefano, Antonino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356645/
https://www.ncbi.nlm.nih.gov/pubmed/32531971
http://dx.doi.org/10.3390/jcm9061807
Descripción
Sumario:Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods: We evaluated the immunohistochemical (IHC) expression of Toll-like receptors 3-7-8-9 (TLR-3-7-8-9), TIR domain-containing adaptor inducing IFNβ (TRIF), Interferon regulatory factor 3 (IRF3), Phospho interferon regulatory factor 3 (pIRF3), Interferon regulatory factor 7 (IRF7), Phospho interferon regulatory factor 7 (pIRF7), retinoic acid-inducible gene I (RIG1), melanoma differentiation-associated protein 5 (MDA5), Probable ATP-dependent RNA helicase DHX58 (LGP2), Mitochondrial antiviral-signaling protein (MAVS), Stimulator of interferon genes (STING), DNA-dependent activator of IFN regulatory factors (DAI), forkhead box protein A3(FOXA3), Interferon alfa (IFNα), and Interferon beta (IFNβ) in the bronchial mucosa of patients with mild/moderate (n = 16), severe/very severe (n = 1618) stable COPD, control smokers (CS) (n = 1612), and control non-smokers (CNS) (n = 1612). We performed similar IHC analyses in peripheral lung from COPD (n = 1612) and CS (n = 1612). IFNα and IFNβ were assessed in bronchoalveolar lavage (BAL) supernatant from CNS (n = 168), CS (n = 169) and mild/moderate COPD (n = 1612). Viral load, including adenovirus-B, -C, Bocavirus, Respiratory syncytial Virus (RSV), Human Rhinovirus (HRV), Coronavirus, Influenza virus A (FLU-A), Influenza virus B (FLU-B), and Parainfluenzae-1 were measured in bronchial rings and lung parenchyma of COPD patients and the related control group (CS). Results: Among the viral-related innate immune mediators, RIG1, LGP2, MAVS, STING, and DAI resulted well expressed in the bronchial and lung tissues of COPD patients, although not in a significantly different mode from control groups. Compared to CS, COPD patients showed no significant differences of viral load in bronchial rings and lung parenchyma. Conclusions: Some virus-related molecules are well-expressed in the lung tissue and bronchi of stable COPD patients independently of the disease severity, suggesting a “primed” tissue environment capable of sensing the potential viral infections occurring in these patients.