Cargando…
Anti-Inflammatory and Gut Microbiota Modulatory Effect of Lactobacillus rhamnosus Strain LDTM 7511 in a Dextran Sulfate Sodium-Induced Colitis Murine Model
Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause–effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experime...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356973/ https://www.ncbi.nlm.nih.gov/pubmed/32512895 http://dx.doi.org/10.3390/microorganisms8060845 |
Sumario: | Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause–effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experimental models supports the idea that gut microbes play a fundamental role in the pathogenesis of IBD. As microbiome-based therapeutics for IBD, the beneficial effects of probiotics have been found in animal colitis models and IBD patients. In this study, based on the dextran sulfate sodium (DSS)-induced colitis mouse model, we investigated Lactobacillus rhamnosus strain LDTM 7511 originating from Korean infant feces as a putative probiotic strain for IBD. The strain LDTM 7511 not only alleviated the release of inflammatory mediators, but also induced the transition of gut microbiota from dysbiotic conditions, exhibiting the opposite pattern in the abundance of DSS colitis-associated bacterial taxa to the DSS group. Our findings suggest that the strain LDTM 7511 has the potential to be used as a probiotic treatment for IBD patients in comparison to L. rhamnosus GG (ATCC 53103), which has been frequently used for IBD studies. |
---|