Cargando…
Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357106/ https://www.ncbi.nlm.nih.gov/pubmed/32575698 http://dx.doi.org/10.3390/plants9060774 |
_version_ | 1783558636997443584 |
---|---|
author | García-Calderón, Margarita Pérez-Delgado, Carmen M. Palove-Balang, Peter Betti, Marco Márquez, Antonio J. |
author_facet | García-Calderón, Margarita Pérez-Delgado, Carmen M. Palove-Balang, Peter Betti, Marco Márquez, Antonio J. |
author_sort | García-Calderón, Margarita |
collection | PubMed |
description | Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health. |
format | Online Article Text |
id | pubmed-7357106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73571062020-07-23 Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration García-Calderón, Margarita Pérez-Delgado, Carmen M. Palove-Balang, Peter Betti, Marco Márquez, Antonio J. Plants (Basel) Review Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health. MDPI 2020-06-20 /pmc/articles/PMC7357106/ /pubmed/32575698 http://dx.doi.org/10.3390/plants9060774 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review García-Calderón, Margarita Pérez-Delgado, Carmen M. Palove-Balang, Peter Betti, Marco Márquez, Antonio J. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration |
title | Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration |
title_full | Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration |
title_fullStr | Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration |
title_full_unstemmed | Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration |
title_short | Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration |
title_sort | flavonoids and isoflavonoids biosynthesis in the model legume lotus japonicus; connections to nitrogen metabolism and photorespiration |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357106/ https://www.ncbi.nlm.nih.gov/pubmed/32575698 http://dx.doi.org/10.3390/plants9060774 |
work_keys_str_mv | AT garciacalderonmargarita flavonoidsandisoflavonoidsbiosynthesisinthemodellegumelotusjaponicusconnectionstonitrogenmetabolismandphotorespiration AT perezdelgadocarmenm flavonoidsandisoflavonoidsbiosynthesisinthemodellegumelotusjaponicusconnectionstonitrogenmetabolismandphotorespiration AT palovebalangpeter flavonoidsandisoflavonoidsbiosynthesisinthemodellegumelotusjaponicusconnectionstonitrogenmetabolismandphotorespiration AT bettimarco flavonoidsandisoflavonoidsbiosynthesisinthemodellegumelotusjaponicusconnectionstonitrogenmetabolismandphotorespiration AT marquezantonioj flavonoidsandisoflavonoidsbiosynthesisinthemodellegumelotusjaponicusconnectionstonitrogenmetabolismandphotorespiration |