Cargando…
Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas
Seagrass form the basis for critically important marine ecosystems. Previously, we implemented a deep convolutional neural network (CNN) model to detect seagrass in multispectral satellite images of three coastal habitats in northern Florida. However, a deep CNN model trained at one location usually...
Autores principales: | Islam, Kazi Aminul, Hill, Victoria, Schaeffer, Blake, Zimmerman, Richard, Li, Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357679/ https://www.ncbi.nlm.nih.gov/pubmed/32685664 http://dx.doi.org/10.1007/s41019-020-00126-0 |
Ejemplares similares
-
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Temporal Stability of Seagrass Extent, Leaf Area, and Carbon Storage in St. Joseph Bay, Florida: a Semi-automated Remote Sensing Analysis
por: Lebrasse, Marie Cindy, et al.
Publicado: (2022) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
A hybrid generative adversarial network for weakly-supervised cloud detection in multispectral images
por: Li, Jun, et al.
Publicado: (2022)