Cargando…
EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis
Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila te...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357864/ https://www.ncbi.nlm.nih.gov/pubmed/31995752 http://dx.doi.org/10.1016/j.celrep.2019.12.086 |
_version_ | 1783558746935394304 |
---|---|
author | Sênos Demarco, Rafael Uyemura, Bradley S. Jones, D. Leanne |
author_facet | Sênos Demarco, Rafael Uyemura, Bradley S. Jones, D. Leanne |
author_sort | Sênos Demarco, Rafael |
collection | PubMed |
description | Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis. Disruption of autophagy in CySCs and early cyst cells (CCs) by the depletion of autophagy-related (Atg) genes reduced early CC numbers and affected CC function, resembling decreased epidermal growth factor receptor (EGFR) signaling. Indeed, our data indicate that EGFR acts to stimulate autophagy to preserve early CC function, whereas target of rapamycin (TOR) negatively regulates autophagy in the differentiating CCs. Finally, we show that the EGFR-mediated stimulation of autophagy regulates lipid levels in CySCs and CCs. These results demonstrate a key role for autophagy in regulating somatic stem cell behavior and tissue homeostasis by integrating cues from both the EGFR and TOR signaling pathways to control lipid metabolism. |
format | Online Article Text |
id | pubmed-7357864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73578642020-07-13 EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis Sênos Demarco, Rafael Uyemura, Bradley S. Jones, D. Leanne Cell Rep Article Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis. Disruption of autophagy in CySCs and early cyst cells (CCs) by the depletion of autophagy-related (Atg) genes reduced early CC numbers and affected CC function, resembling decreased epidermal growth factor receptor (EGFR) signaling. Indeed, our data indicate that EGFR acts to stimulate autophagy to preserve early CC function, whereas target of rapamycin (TOR) negatively regulates autophagy in the differentiating CCs. Finally, we show that the EGFR-mediated stimulation of autophagy regulates lipid levels in CySCs and CCs. These results demonstrate a key role for autophagy in regulating somatic stem cell behavior and tissue homeostasis by integrating cues from both the EGFR and TOR signaling pathways to control lipid metabolism. 2020-01-28 /pmc/articles/PMC7357864/ /pubmed/31995752 http://dx.doi.org/10.1016/j.celrep.2019.12.086 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Sênos Demarco, Rafael Uyemura, Bradley S. Jones, D. Leanne EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis |
title | EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis |
title_full | EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis |
title_fullStr | EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis |
title_full_unstemmed | EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis |
title_short | EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis |
title_sort | egfr signaling stimulates autophagy to regulate stem cell maintenance and lipid homeostasis in the drosophila testis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357864/ https://www.ncbi.nlm.nih.gov/pubmed/31995752 http://dx.doi.org/10.1016/j.celrep.2019.12.086 |
work_keys_str_mv | AT senosdemarcorafael egfrsignalingstimulatesautophagytoregulatestemcellmaintenanceandlipidhomeostasisinthedrosophilatestis AT uyemurabradleys egfrsignalingstimulatesautophagytoregulatestemcellmaintenanceandlipidhomeostasisinthedrosophilatestis AT jonesdleanne egfrsignalingstimulatesautophagytoregulatestemcellmaintenanceandlipidhomeostasisinthedrosophilatestis |