Cargando…
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
Hardware-based spiking neural networks (SNNs) inspired by a biological nervous system are regarded as an innovative computing system with very low power consumption and massively parallel operation. To train SNNs with supervision, we propose an efficient on-chip training scheme approximating backpro...
Autores principales: | Kwon, Dongseok, Lim, Suhwan, Bae, Jong-Ho, Lee, Sung-Tae, Kim, Hyeongsu, Seo, Young-Tak, Oh, Seongbin, Kim, Jangsaeng, Yeom, Kyuho, Park, Byung-Gook, Lee, Jong-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358558/ https://www.ncbi.nlm.nih.gov/pubmed/32733180 http://dx.doi.org/10.3389/fnins.2020.00423 |
Ejemplares similares
-
Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets
por: Lee, Jeongjun, et al.
Publicado: (2020) -
Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks
por: Zhang, Tielin, et al.
Publicado: (2021) -
An Approximation of the Error Backpropagation Algorithm in a
Predictive Coding Network with Local Hebbian Synaptic Plasticity
por: Whittington, James C. R., et al.
Publicado: (2017) -
Spike-Based Approximate Backpropagation Algorithm of Brain-Inspired Deep SNN for Sonar Target Classification
por: Liu, Yang, et al.
Publicado: (2022) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016)