Cargando…
Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout
Observing, classifying and assessing human movements is important in many applied fields, including human-computer interface, clinical assessment, activity monitoring and sports performance. The redundancy of options in planning and implementing motor programmes, the inter- and intra-individual vari...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358600/ https://www.ncbi.nlm.nih.gov/pubmed/32733863 http://dx.doi.org/10.3389/fbioe.2020.00664 |
Sumario: | Observing, classifying and assessing human movements is important in many applied fields, including human-computer interface, clinical assessment, activity monitoring and sports performance. The redundancy of options in planning and implementing motor programmes, the inter- and intra-individual variability in movement execution, and the time-continuous, high-dimensional nature of motion data make segmenting sequential movements into a smaller set of discrete classes of actions non-trivial. We aimed to develop and validate a method for the automatic classification of four popular functional fitness drills, which are commonly performed in current circuit training routines. Five inertial measurement units were located on the upper and lower limb, and on the trunk of fourteen participants. Positions were chosen by keeping into account the dynamics of the movement and the positions where commercially-available smart technologies are typically secured. Accelerations and angular velocities were acquired continuously from the units and used to train and test different supervised learning models, including k-Nearest Neighbors (kNN) and support-vector machine (SVM) algorithms. The use of different kernel functions, as well as different strategies to segment continuous inertial data were explored. Classification performance was assessed from both the training dataset (k-fold cross-validation), and a test dataset (leave-one-subject-out validation). Classification from different subsets of the measurement units was also evaluated (1-sensor and 2-sensor data). SVM with a cubic kernel and fed with data from 600 ms windows with a 10% overlap gave the best classification performances, yielding to an overall accuracy of 97.8%. This approach did not misclassify any functional fitness movement for another, but confused relatively frequently (2.8–18.9%) a fitness movement phase with the transition between subsequent repetitions of the same task or different drills. Among 1-sensor configurations, the upper arm achieved the best classification performance (96.4% accuracy), whereas combining the upper arm and the thigh sensors obtained the highest level of accuracy (97.6%) from 2-sensors movement tracking. We found that supervised learning can successfully classify complex sequential movements such as those of functional fitness workouts. Our approach, which could exploit technologies currently available in the consumer market, demonstrated exciting potential for future on-field applications including unstructured training. |
---|