Cargando…
Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout
Observing, classifying and assessing human movements is important in many applied fields, including human-computer interface, clinical assessment, activity monitoring and sports performance. The redundancy of options in planning and implementing motor programmes, the inter- and intra-individual vari...
Autores principales: | Preatoni, Ezio, Nodari, Stefano, Lopomo, Nicola Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358600/ https://www.ncbi.nlm.nih.gov/pubmed/32733863 http://dx.doi.org/10.3389/fbioe.2020.00664 |
Ejemplares similares
-
Classifying Elite From Novice Athletes Using Simulated Wearable Sensor Data
por: Ross, Gwyneth B., et al.
Publicado: (2020) -
Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables
por: Johnston, Lucy, et al.
Publicado: (2021) -
Quantitative downhill skiing technique analysis according to ski instruction curricula: A proof-of-concept study applying principal component analysis on wearable sensor data
por: Debertin, Daniel, et al.
Publicado: (2022) -
The Application of Wearable Glucose Sensors in Point-of-Care Testing
por: Zhang, Sheng, et al.
Publicado: (2021) -
Fully integrated wearable humidity sensor for respiration monitoring
por: Jin, Xiaofeng, et al.
Publicado: (2022)