Cargando…

Datasets of ionospheric parameters provided by SCINDA GNSS receiver from Lisbon airport area

Here we present datasets provided by a SCINDA GNSS receiver installed in the Lisbon airport area from November of 2014 to July of 2019. The installed equipment is a NovAtel EURO4 with a JAVAD Choke-Ring antenna. The data are in an archived format and include the general messages on quality of record...

Descripción completa

Detalles Bibliográficos
Autores principales: Barlyaeva, Tatiana, Barata, Teresa, Morozova, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358740/
https://www.ncbi.nlm.nih.gov/pubmed/32685630
http://dx.doi.org/10.1016/j.dib.2020.105966
Descripción
Sumario:Here we present datasets provided by a SCINDA GNSS receiver installed in the Lisbon airport area from November of 2014 to July of 2019. The installed equipment is a NovAtel EURO4 with a JAVAD Choke-Ring antenna. The data are in an archived format and include the general messages on quality of records (*.msg), RANGE files (*.rng), raw observables as the signal-to-noise (S/N) ratios, pseudoranges and phases (*.obs), receiver position information (*.psn), ionosphere scintillations monitor (ISMRB; *.ism) and ionospheric parameters: total electron content (TEC), rate of change of TEC index (ROTI), and the scintillation index S4 (*.scn). The presented data cover the full 2015 year. The raw data are of 1-min resolution and available for each of the receiver-satellite pairs. The processing and the analysis of the ionosphere scintillation datasets can be done using a specific "SCINDA-Iono" toolbox for the MATLAB developed by T. Barlyaeva in 2019 and available online via MathWorks File Exchange system. The toolbox calculates 1-h means for ionospheric parameters for each of the available receiver-satellite pairs and averaged over all available satellites during the analyzed hour. Here we present the processed data for the following months in 2015: March, June, October, and December. The months were selected as containing most significant geomagnetic events of 2015. The 1-h means for other months can be obtained from the raw data using the aforementioned toolbox. The provided datasets are interesting for the GNSS and ionosphere based scientific communities.