Cargando…

Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips

This method describes a novel approach to systematically investigate the effect of the fluid shear stress (FSS) on epithelial cells thanks to a single microfluidic device based on Hele-Shaw geometry. The method was validated with intestinal Caco-2 cell monolayers and lung A549 cells. We provide guid...

Descripción completa

Detalles Bibliográficos
Autores principales: Delon, Ludivine C., Guo, Zhaobin, Kashani, Moein Navvab, Yang, Chih-Tsung, Prestidge, Clive, Thierry, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358744/
https://www.ncbi.nlm.nih.gov/pubmed/32685381
http://dx.doi.org/10.1016/j.mex.2020.100980
_version_ 1783558906115522560
author Delon, Ludivine C.
Guo, Zhaobin
Kashani, Moein Navvab
Yang, Chih-Tsung
Prestidge, Clive
Thierry, Benjamin
author_facet Delon, Ludivine C.
Guo, Zhaobin
Kashani, Moein Navvab
Yang, Chih-Tsung
Prestidge, Clive
Thierry, Benjamin
author_sort Delon, Ludivine C.
collection PubMed
description This method describes a novel approach to systematically investigate the effect of the fluid shear stress (FSS) on epithelial cells thanks to a single microfluidic device based on Hele-Shaw geometry. The method was validated with intestinal Caco-2 cell monolayers and lung A549 cells. We provide guidelines to adjust the experimental parameters to apply specific ranges of FSS and to specify more accurately the area where to image the cells within the device by the performance of a computational simulation of the fluid flow. Most importantly, this simulation enables to validate the equation. This approach was successfully applied to systematically investigate Caco-2 cell monolayers-based intestine-on-chip models as reported in a companion article published in Biomaterials. This study showed that exposure to microfluidic FSS induces significant phenotypical and functional changes. A detailed understanding of the effects of the FSS will enable the realization of in vitro organs-on-chip models with well-defined characteristics tailored to a specific purpose. The Hele-Shaw approach used in this study could be readily applied to other cell types and adapted for a wide range of physiologically relevant FSS. • Fluid shear stress is a key parameter in the differentiation of epithelial cells cultured in organ-on-chip models. • A simple approach can be used to assess the effect of fluid shear on cellular monolayer cultured in microfluidic devices. • Careful optimization of fluid shear stress environment is necessary for the development of better-defined organ-on-chip models. • Computational simulation of the fluid flow gives an accurate definition of the FSS in a microfluidic channel necessary to interpret the results.
format Online
Article
Text
id pubmed-7358744
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-73587442020-07-17 Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips Delon, Ludivine C. Guo, Zhaobin Kashani, Moein Navvab Yang, Chih-Tsung Prestidge, Clive Thierry, Benjamin MethodsX Agricultural and Biological Science This method describes a novel approach to systematically investigate the effect of the fluid shear stress (FSS) on epithelial cells thanks to a single microfluidic device based on Hele-Shaw geometry. The method was validated with intestinal Caco-2 cell monolayers and lung A549 cells. We provide guidelines to adjust the experimental parameters to apply specific ranges of FSS and to specify more accurately the area where to image the cells within the device by the performance of a computational simulation of the fluid flow. Most importantly, this simulation enables to validate the equation. This approach was successfully applied to systematically investigate Caco-2 cell monolayers-based intestine-on-chip models as reported in a companion article published in Biomaterials. This study showed that exposure to microfluidic FSS induces significant phenotypical and functional changes. A detailed understanding of the effects of the FSS will enable the realization of in vitro organs-on-chip models with well-defined characteristics tailored to a specific purpose. The Hele-Shaw approach used in this study could be readily applied to other cell types and adapted for a wide range of physiologically relevant FSS. • Fluid shear stress is a key parameter in the differentiation of epithelial cells cultured in organ-on-chip models. • A simple approach can be used to assess the effect of fluid shear on cellular monolayer cultured in microfluidic devices. • Careful optimization of fluid shear stress environment is necessary for the development of better-defined organ-on-chip models. • Computational simulation of the fluid flow gives an accurate definition of the FSS in a microfluidic channel necessary to interpret the results. Elsevier 2020-07-02 /pmc/articles/PMC7358744/ /pubmed/32685381 http://dx.doi.org/10.1016/j.mex.2020.100980 Text en © 2020 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Agricultural and Biological Science
Delon, Ludivine C.
Guo, Zhaobin
Kashani, Moein Navvab
Yang, Chih-Tsung
Prestidge, Clive
Thierry, Benjamin
Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
title Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
title_full Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
title_fullStr Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
title_full_unstemmed Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
title_short Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
title_sort hele shaw microfluidic device: a new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips
topic Agricultural and Biological Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358744/
https://www.ncbi.nlm.nih.gov/pubmed/32685381
http://dx.doi.org/10.1016/j.mex.2020.100980
work_keys_str_mv AT delonludivinec heleshawmicrofluidicdeviceanewtoolforsystematicinvestigationintotheeffectofthefluidshearstressfororgansonchips
AT guozhaobin heleshawmicrofluidicdeviceanewtoolforsystematicinvestigationintotheeffectofthefluidshearstressfororgansonchips
AT kashanimoeinnavvab heleshawmicrofluidicdeviceanewtoolforsystematicinvestigationintotheeffectofthefluidshearstressfororgansonchips
AT yangchihtsung heleshawmicrofluidicdeviceanewtoolforsystematicinvestigationintotheeffectofthefluidshearstressfororgansonchips
AT prestidgeclive heleshawmicrofluidicdeviceanewtoolforsystematicinvestigationintotheeffectofthefluidshearstressfororgansonchips
AT thierrybenjamin heleshawmicrofluidicdeviceanewtoolforsystematicinvestigationintotheeffectofthefluidshearstressfororgansonchips