Cargando…

Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation

BACKGROUND: The duration of ventricular repolarization (VR) and its spatial and temporal heterogeneity are central elements in arrhythmogenesis. We studied the adaptation of VR duration and dispersion and their relationship in healthy human subjects during atrial pacing. METHODS: Patients 20‐50 year...

Descripción completa

Detalles Bibliográficos
Autores principales: Axelsson, Karl‐Jonas, Brännlund, Adam, Gransberg, Lennart, Lundahl, Gunilla, Vahedi, Farzad, Bergfeldt, Lennart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358894/
https://www.ncbi.nlm.nih.gov/pubmed/31707762
http://dx.doi.org/10.1111/anec.12713
_version_ 1783558935129620480
author Axelsson, Karl‐Jonas
Brännlund, Adam
Gransberg, Lennart
Lundahl, Gunilla
Vahedi, Farzad
Bergfeldt, Lennart
author_facet Axelsson, Karl‐Jonas
Brännlund, Adam
Gransberg, Lennart
Lundahl, Gunilla
Vahedi, Farzad
Bergfeldt, Lennart
author_sort Axelsson, Karl‐Jonas
collection PubMed
description BACKGROUND: The duration of ventricular repolarization (VR) and its spatial and temporal heterogeneity are central elements in arrhythmogenesis. We studied the adaptation of VR duration and dispersion and their relationship in healthy human subjects during atrial pacing. METHODS: Patients 20‐50 years of age who were scheduled for ablation of supraventricular tachycardia without preexcitation but otherwise healthy were eligible. Vectorcardiography recordings with Frank leads were used for data collection. Incremental atrial pacing from a coronary sinus electrode was performed by decrements of 10ms/cycle from just above sinus rate, and then kept at a fixed heart rate (HR) just below the Wenckebach rate for ≥5min and then stopped. VR duration was measured as QT and VR dispersion as T area, T amplitude and ventricular gradient. The primary measure (T90 End) was the time to reach 90% change from baseline to the steady state value during and after pacing. RESULTS: A complete study protocol was accomplished in 9 individuals (6 women). VR duration displayed a monophasic adaptation during HR acceleration lasting on average 20s. The median (Q1‐Q3) T90 End for QT was 85s (51‐104), a delay by a factor >4. All dispersion measures displayed a tri‐phasic response pattern during HR acceleration and T90 End was 3‐5 times shorter than for VR duration. CONCLUSIONS: Even during close to “physiological” conditions, complex and differing response patterns in VR duration and dispersion measures followed changes in HR. Extended knowledge about these responses in disease conditions might assist in risk evaluation and finding therapeutic alternatives.
format Online
Article
Text
id pubmed-7358894
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73588942020-07-17 Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation Axelsson, Karl‐Jonas Brännlund, Adam Gransberg, Lennart Lundahl, Gunilla Vahedi, Farzad Bergfeldt, Lennart Ann Noninvasive Electrocardiol Original Articles BACKGROUND: The duration of ventricular repolarization (VR) and its spatial and temporal heterogeneity are central elements in arrhythmogenesis. We studied the adaptation of VR duration and dispersion and their relationship in healthy human subjects during atrial pacing. METHODS: Patients 20‐50 years of age who were scheduled for ablation of supraventricular tachycardia without preexcitation but otherwise healthy were eligible. Vectorcardiography recordings with Frank leads were used for data collection. Incremental atrial pacing from a coronary sinus electrode was performed by decrements of 10ms/cycle from just above sinus rate, and then kept at a fixed heart rate (HR) just below the Wenckebach rate for ≥5min and then stopped. VR duration was measured as QT and VR dispersion as T area, T amplitude and ventricular gradient. The primary measure (T90 End) was the time to reach 90% change from baseline to the steady state value during and after pacing. RESULTS: A complete study protocol was accomplished in 9 individuals (6 women). VR duration displayed a monophasic adaptation during HR acceleration lasting on average 20s. The median (Q1‐Q3) T90 End for QT was 85s (51‐104), a delay by a factor >4. All dispersion measures displayed a tri‐phasic response pattern during HR acceleration and T90 End was 3‐5 times shorter than for VR duration. CONCLUSIONS: Even during close to “physiological” conditions, complex and differing response patterns in VR duration and dispersion measures followed changes in HR. Extended knowledge about these responses in disease conditions might assist in risk evaluation and finding therapeutic alternatives. John Wiley and Sons Inc. 2019-11-10 /pmc/articles/PMC7358894/ /pubmed/31707762 http://dx.doi.org/10.1111/anec.12713 Text en © 2019 The Authors. Annals of Noninvasive Electrocardiology published by Wiley Periodicals, LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Axelsson, Karl‐Jonas
Brännlund, Adam
Gransberg, Lennart
Lundahl, Gunilla
Vahedi, Farzad
Bergfeldt, Lennart
Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
title Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
title_full Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
title_fullStr Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
title_full_unstemmed Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
title_short Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
title_sort adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358894/
https://www.ncbi.nlm.nih.gov/pubmed/31707762
http://dx.doi.org/10.1111/anec.12713
work_keys_str_mv AT axelssonkarljonas adaptationofventricularrepolarizationdurationanddispersionduringchangesinheartrateinducedbyatrialstimulation
AT brannlundadam adaptationofventricularrepolarizationdurationanddispersionduringchangesinheartrateinducedbyatrialstimulation
AT gransberglennart adaptationofventricularrepolarizationdurationanddispersionduringchangesinheartrateinducedbyatrialstimulation
AT lundahlgunilla adaptationofventricularrepolarizationdurationanddispersionduringchangesinheartrateinducedbyatrialstimulation
AT vahedifarzad adaptationofventricularrepolarizationdurationanddispersionduringchangesinheartrateinducedbyatrialstimulation
AT bergfeldtlennart adaptationofventricularrepolarizationdurationanddispersionduringchangesinheartrateinducedbyatrialstimulation