Cargando…

Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy

One of the major problems being faced by researchers and clinicians in leukemic treatment is the development of multidrug resistance (MDR) which restrict the action of several tyrosine kinase inhibitors (TKIs). MDR is a major obstacle to the success of cancer chemotherapy. The mechanism of MDR invol...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Sonu Kumar, Singh, Priyanka, Ali, Villayat, Verma, Malkhey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358983/
https://www.ncbi.nlm.nih.gov/pubmed/32676170
http://dx.doi.org/10.4081/oncol.2020.448
Descripción
Sumario:One of the major problems being faced by researchers and clinicians in leukemic treatment is the development of multidrug resistance (MDR) which restrict the action of several tyrosine kinase inhibitors (TKIs). MDR is a major obstacle to the success of cancer chemotherapy. The mechanism of MDR involves active drug efflux transport of ABC superfamily of proteins such as Pglycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that weaken the effectiveness of chemotherapeutics and negative impact on the future of anticancer therapy. In this review, the authors aim to provide an overview of various multidrug resistance (MDR) mechanisms observed in cancer cells as well as the various strategies developed to overcome these MDR. Extensive studies have been carried out since last several years to enhance the efficacy of chemotherapy by defeating these MDR mechanisms with the use of novel anticancer drugs that could escape from the efflux reaction, MDR modulators or chemosensitizers, multifunctional nanotechnology, and RNA interference (RNAi) therapy.