Cargando…

Impaired cognition is related to microstructural integrity in relapsing remitting multiple sclerosis

BACKGROUND: Cognitive impairment is common in multiple sclerosis (MS). However, the relationship between cognitive deficits and microstructural abnormalities in Chinese MS patients remains unclear. We aimed to investigate the importance of microstructural abnormalities and the associations with cogn...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Lin, Ng, Angel, Chen, Qianyun, Lam, Bonnie, Abrigo, Jill, Au, Cheryl, Mok, Vincent C. T., Wong, Adrian, Lau, Alexander Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359116/
https://www.ncbi.nlm.nih.gov/pubmed/32519512
http://dx.doi.org/10.1002/acn3.51100
Descripción
Sumario:BACKGROUND: Cognitive impairment is common in multiple sclerosis (MS). However, the relationship between cognitive deficits and microstructural abnormalities in Chinese MS patients remains unclear. We aimed to investigate the importance of microstructural abnormalities and the associations with cognitive impairment in Chinese MS patients. METHODS: Three‐dimensional T1‐weighted magnetic resonance imaging (MRI) scans were obtained from 36 relapsing remitting MS patients. Diffusion tensor imaging (DTI) scans were acquired for 29 (81%) patients. Cognitive impairment was assessed using a comprehensive neuropsychological battery. Patients were classified into cognitively impaired (CI) group and cognitively preserved (CP) group. Using volBrain and FSL software, we assessed white matter lesion burden, white matter (WM) and gray matter (GM) volumetric as well as microstructural diffusivity. MRI variables explaining cognitive impairment were analyzed. RESULTS: Fifteen (42%) patients were classified as CI. Verbal learning and memory was the most commonly impaired domain (n = 16, 44%). CI patients had lower mean skeleton fractional anisotropy (FA) value than CP patients (275.45 vs. 283.61 × 10(−3), P = 0.023). The final predicting model including demographic variables and global skeleton mean diffusivity (MD) explained 43.6% of variance of the presence of cognitive impairment (β = 0.131, P = 0.041). CI patients showed a widespread change of microstructural integrity comparing to CP patients, which was rarely overlapping with lesion probability map. Microstructural abnormalities in corpus callosum were associated with performance in verbal learning and memory, processing speed and selective attention (P < 0.05). CONCLUSION: Loss of microstructural integrity demonstrated by DTI helps explain cognitive dysfunction in Chinese MS patients.