Cargando…
MicroBVS: Dirichlet-tree multinomial regression models with Bayesian variable selection - an R package
BACKGROUND: Understanding the relation between the human microbiome and modulating factors, such as diet, may help researchers design intervention strategies that promote and maintain healthy microbial communities. Numerous analytical tools are available to help identify these relations, oftentimes...
Autores principales: | Koslovsky, Matthew D., Vannucci, Marina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359232/ https://www.ncbi.nlm.nih.gov/pubmed/32660471 http://dx.doi.org/10.1186/s12859-020-03640-0 |
Ejemplares similares
-
Correction to: MicroBVS: Dirichlet-tree multinomial regression models with Bayesian variable selection - an R package
por: Koslovsky, Matthew D., et al.
Publicado: (2020) -
An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
por: Wadsworth, W. Duncan, et al.
Publicado: (2017) -
Erratum to: An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
por: Wadsworth, W. Duncan, et al.
Publicado: (2017) -
Dirichlet negative multinomial regression for overdispersed correlated count
data
por: Farewell, Daniel M., et al.
Publicado: (2013) -
Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics
por: Holmes, Ian, et al.
Publicado: (2012)