Cargando…
Perillyle alcohol and Quercetin ameliorate monocrotaline-induced pulmonary artery hypertension in rats through PARP1-mediated miR-204 down-regulation and its downstream pathway
BACKGROUND: Pulmonary artery hypertension (PAH) is a vascular disease in the lung characterized by elevated pulmonary arterial pressure (PAP). Many miRNAs play a role in the pathophysiology of PAH. Perillyle alcohol (PA) and Quercetin (QS) are plant derivatives with antioxidant and anti-proliferativ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359282/ https://www.ncbi.nlm.nih.gov/pubmed/32660602 http://dx.doi.org/10.1186/s12906-020-03015-1 |
Sumario: | BACKGROUND: Pulmonary artery hypertension (PAH) is a vascular disease in the lung characterized by elevated pulmonary arterial pressure (PAP). Many miRNAs play a role in the pathophysiology of PAH. Perillyle alcohol (PA) and Quercetin (QS) are plant derivatives with antioxidant and anti-proliferative properties. We investigated the effect of PA and QS on PAP, expression of PARP1, miR-204, and their targets, HIF1α and NFATc2, in experimental PAH. METHODS: Thirty rats were divided into control, MCT, MCT + Veh, MCT + PA and MCT + QS groups. MCT (60 mg/kg) was injected subcutaneously to induce PAH. PA (50 mg/kg daily) and QS (30 mg/kg daily) were administered for 3 weeks after inducing PAH. PAP, lung pathology, expression of miRNA and mRNA, and target proteins were evaluated through right ventricle cannulation, H&E staining, real-time qPCR, and western blotting, respectively. RESULTS: Inflammation and lung arteriole thickness in the MCT group increased compared to control group. PA and QS ameliorated inflammation and reduced arteriole thickness significantly. miR-204 expression decreased in PAH rats (p < 0.001). PA (p < 0.001) and QS (p < 0.01) significantly increased miR-204 expression. Expression of PARP1, HIF1α, NFATc2, and α-SMA mRNA increased significantly in MCT + veh rats (all p < 0.001), and these were reduced after treatment with PA and QS (both p < 0.01). PA and QS also decreased the expression of PARP1, HIF1α, and NFATc2 proteins that had increased in MCT + Veh group. CONCLUSION: PA and QS improved PAH possibly by affecting the expression of PARP1 and miR-204 and their downstream targets, HIF1a and NFATc2. PA and QS may be therapeutic goals in the treatment of PAH. |
---|