Cargando…
A machine learning framework for computationally expensive transient models
Transient simulations of dynamic systems, using physics-based scientific computing tools, are practically limited by availability of computational resources and power. While the promise of machine learning has been explored in a variety of scientific disciplines, its application in creation of a fra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359323/ https://www.ncbi.nlm.nih.gov/pubmed/32661228 http://dx.doi.org/10.1038/s41598-020-67546-w |
Sumario: | Transient simulations of dynamic systems, using physics-based scientific computing tools, are practically limited by availability of computational resources and power. While the promise of machine learning has been explored in a variety of scientific disciplines, its application in creation of a framework for computationally expensive transient models has not been fully explored. Here, we present an ensemble approach where one such computationally expensive tool, discrete element method, is combined with time-series forecasting via auto regressive integrated moving average and machine learning methods to simulate a complex pharmaceutical problem: development of an agitation protocol in an agitated filter dryer to ensure uniform solid bed mixing. This ensemble approach leads to a significant reduction in the computational burden, while retaining model accuracy and performance, practically rendering simulations possible. The developed machine-learning model shows good predictability and agreement with the literature, demonstrating its tremendous potential in scientific computing. |
---|