Cargando…
Gene regulatory network inference from sparsely sampled noisy data
The complexity of biological systems is encoded in gene regulatory networks. Unravelling this intricate web is a fundamental step in understanding the mechanisms of life and eventually developing efficient therapies to treat and cure diseases. The major obstacle in inferring gene regulatory networks...
Autores principales: | Aalto, Atte, Viitasaari, Lauri, Ilmonen, Pauliina, Mombaerts, Laurent, Gonçalves, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359369/ https://www.ncbi.nlm.nih.gov/pubmed/32661225 http://dx.doi.org/10.1038/s41467-020-17217-1 |
Ejemplares similares
-
Inferring sparse networks for noisy transient processes
por: Tran, Hoang M., et al.
Publicado: (2016) -
Flexible transition probability model for assessing cost-effectiveness of breast cancer screening extension to include women aged 45-49 and 70-74
por: Shafik, Nourhan, et al.
Publicado: (2023) -
Inference of regulatory networks through temporally sparse data
por: Alali, Mohammad, et al.
Publicado: (2022) -
Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes
por: Yang, Shihao, et al.
Publicado: (2021) -
Population coding in sparsely connected networks of noisy neurons
por: Tripp, Bryan P., et al.
Publicado: (2012)