Cargando…

SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis

BACKGROUND: Severe acute respiratory syndrome (SARS)-CoV-2-induced coronavirus disease-2019 (COVID-19) is a pandemic disease that affects > 2.8 million people worldwide, with numbers increasing dramatically daily. However, there is no specific treatment for COVID-19 and much remains unknown about...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jincheng, Xu, Xiaoyue, Jiang, Lina, Dua, Kamal, Hansbro, Philip M., Liu, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359430/
https://www.ncbi.nlm.nih.gov/pubmed/32664949
http://dx.doi.org/10.1186/s12931-020-01445-6
Descripción
Sumario:BACKGROUND: Severe acute respiratory syndrome (SARS)-CoV-2-induced coronavirus disease-2019 (COVID-19) is a pandemic disease that affects > 2.8 million people worldwide, with numbers increasing dramatically daily. However, there is no specific treatment for COVID-19 and much remains unknown about this disease. Angiotensin-converting enzyme (ACE)2 is a cellular receptor of SARS-CoV-2. It is cleaved by type II transmembrane serine protease (TMPRSS)2 and disintegrin and metallopeptidase domain (ADAM)17 to assist viral entry into host cells. Clinically, SARS-CoV-2 infection may result in acute lung injury and lung fibrosis, but the underlying mechanisms of COVID-19 induced lung fibrosis are not fully understood. METHODS: The networks of ACE2 and its interacting molecules were identified using bioinformatic methods. Their gene and protein expressions were measured in human epithelial cells after 24 h SARS-CoV-2 infection, or in existing datasets of lung fibrosis patients. RESULTS: We confirmed the binding of SARS-CoV-2 and ACE2 by bioinformatic analysis. TMPRSS2, ADAM17, tissue inhibitor of metalloproteinase (TIMP)3, angiotensinogen (AGT), transformation growth factor beta (TGFB1), connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF) A and fibronectin (FN) were interacted with ACE2, and the mRNA and protein of these molecules were expressed in lung epithelial cells. SARS-CoV-2 infection increased ACE2, TGFB1, CTGF and FN1 mRNA that were drivers of lung fibrosis. These changes were also found in lung tissues from lung fibrosis patients. CONCLUSIONS: Therefore, SARS-CoV-2 binds with ACE2 and activates fibrosis-related genes and processes to induce lung fibrosis.