Cargando…
Developing Customizable Cancer Information Extraction Modules for Pathology Reports Using CLAMP
Natural language processing (NLP) technologies have been successfully applied to cancer research by enabling automated phenotypic information extraction from narratives in electronic health records (EHRs) such as pathology reports; however, developing customized NLP solutions requires substantial ef...
Autores principales: | Soysal, Ergin, Warner, Jeremy L., Wang, Jingqi, Jiang, Min, Harvey, Krysten, Jain, Sandeep Kumar, Dong, Xiao, Song, Hsing-Yi, Siddhanamatha, Harish, Wang, Liwei, Dai, Qi, Chen, Qingxia, Du, Xianglin, Tao, Cui, Yang, Ping, Denny, Joshua Charles, Liu, Hongfang, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359882/ https://www.ncbi.nlm.nih.gov/pubmed/31438083 http://dx.doi.org/10.3233/SHTI190383 |
Ejemplares similares
-
CLAMP – a toolkit for efficiently building customized clinical natural language processing pipelines
por: Soysal, Ergin, et al.
Publicado: (2017) -
Identifying Metastases-related Information from Pathology Reports of Lung Cancer Patients
por: Soysal, Ergin, et al.
Publicado: (2017) -
Discovery of Noncancer Drug Effects on Survival in Electronic Health Records of Patients With Cancer: A New Paradigm for Drug Repurposing
por: Wu, Yonghui, et al.
Publicado: (2019) -
Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction
por: Zhang, Yaoyun, et al.
Publicado: (2015) -
Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature
por: Zhang, Yaoyun, et al.
Publicado: (2016)