Cargando…
Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor
PURPOSE: The long intergenic non-protein coding RNA 1094 (LINC01094) plays a vital role in the oncogenicity of clear cell renal cell carcinoma. However, its expression profile and detailed roles in glioblastoma (GBM) remain unknown. In this study, we mainly investigated the expression and roles of L...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359895/ https://www.ncbi.nlm.nih.gov/pubmed/32765065 http://dx.doi.org/10.2147/CMAR.S256147 |
_version_ | 1783559131366424576 |
---|---|
author | Dong, Xiaoyan Fu, Xiuxin Yu, Miao Li, Zengfen |
author_facet | Dong, Xiaoyan Fu, Xiuxin Yu, Miao Li, Zengfen |
author_sort | Dong, Xiaoyan |
collection | PubMed |
description | PURPOSE: The long intergenic non-protein coding RNA 1094 (LINC01094) plays a vital role in the oncogenicity of clear cell renal cell carcinoma. However, its expression profile and detailed roles in glioblastoma (GBM) remain unknown. In this study, we mainly investigated the expression and roles of LINC01094 in GBM and focused on the mechanism by which LINC01094 regulates the malignant characteristics of GBM. PATIENTS AND METHODS: LINC01094 expression in GBM was determined with quantitative reverse transcription polymerase chain reaction. The proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo of GBM cells were evaluated using Cell Counting Kit-8 assay, flow cytometry analysis, migration assay, invasion assay, and tumor xenograft models, respectively. RESULTS: LINC01094 was overexpressed in GBM tissues and cell lines. Moreover, increased LINC01094 expression was associated with adverse clinicopathological parameters in patients with GBM. Loss of LINC01094 inhibited GBM cell proliferation, migration, and invasion; promoted cell apoptosis; and suppressed tumor growth in vivo. Mechanically, LINC01094 functioned as a molecular sponge for microRNA-577 (miR-577) and consequently enhanced the expression of brain-derived neurotrophic factor (BDNF) in GBM cells. Both miR-577 inhibition and BDNF expression enhancement reversed LINC01094 deficiency-mediated inhibition of malignant processes in GBM cells. CONCLUSION: Our results verified the involvement of the LINC01094/miR-577/BDNF pathway in GBM cells and its enhancing effects on the aggressive behaviors of GBM cells in vitro and in vivo. This pathway may be a novel and promising focus for the future development of targeted therapies for GBM. |
format | Online Article Text |
id | pubmed-7359895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-73598952020-08-05 Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor Dong, Xiaoyan Fu, Xiuxin Yu, Miao Li, Zengfen Cancer Manag Res Original Research PURPOSE: The long intergenic non-protein coding RNA 1094 (LINC01094) plays a vital role in the oncogenicity of clear cell renal cell carcinoma. However, its expression profile and detailed roles in glioblastoma (GBM) remain unknown. In this study, we mainly investigated the expression and roles of LINC01094 in GBM and focused on the mechanism by which LINC01094 regulates the malignant characteristics of GBM. PATIENTS AND METHODS: LINC01094 expression in GBM was determined with quantitative reverse transcription polymerase chain reaction. The proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo of GBM cells were evaluated using Cell Counting Kit-8 assay, flow cytometry analysis, migration assay, invasion assay, and tumor xenograft models, respectively. RESULTS: LINC01094 was overexpressed in GBM tissues and cell lines. Moreover, increased LINC01094 expression was associated with adverse clinicopathological parameters in patients with GBM. Loss of LINC01094 inhibited GBM cell proliferation, migration, and invasion; promoted cell apoptosis; and suppressed tumor growth in vivo. Mechanically, LINC01094 functioned as a molecular sponge for microRNA-577 (miR-577) and consequently enhanced the expression of brain-derived neurotrophic factor (BDNF) in GBM cells. Both miR-577 inhibition and BDNF expression enhancement reversed LINC01094 deficiency-mediated inhibition of malignant processes in GBM cells. CONCLUSION: Our results verified the involvement of the LINC01094/miR-577/BDNF pathway in GBM cells and its enhancing effects on the aggressive behaviors of GBM cells in vitro and in vivo. This pathway may be a novel and promising focus for the future development of targeted therapies for GBM. Dove 2020-07-09 /pmc/articles/PMC7359895/ /pubmed/32765065 http://dx.doi.org/10.2147/CMAR.S256147 Text en © 2020 Dong et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Dong, Xiaoyan Fu, Xiuxin Yu, Miao Li, Zengfen Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor |
title | Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor |
title_full | Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor |
title_fullStr | Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor |
title_full_unstemmed | Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor |
title_short | Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor |
title_sort | long intergenic non-protein coding rna 1094 promotes initiation and progression of glioblastoma by promoting microrna-577-regulated stabilization of brain-derived neurotrophic factor |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359895/ https://www.ncbi.nlm.nih.gov/pubmed/32765065 http://dx.doi.org/10.2147/CMAR.S256147 |
work_keys_str_mv | AT dongxiaoyan longintergenicnonproteincodingrna1094promotesinitiationandprogressionofglioblastomabypromotingmicrorna577regulatedstabilizationofbrainderivedneurotrophicfactor AT fuxiuxin longintergenicnonproteincodingrna1094promotesinitiationandprogressionofglioblastomabypromotingmicrorna577regulatedstabilizationofbrainderivedneurotrophicfactor AT yumiao longintergenicnonproteincodingrna1094promotesinitiationandprogressionofglioblastomabypromotingmicrorna577regulatedstabilizationofbrainderivedneurotrophicfactor AT lizengfen longintergenicnonproteincodingrna1094promotesinitiationandprogressionofglioblastomabypromotingmicrorna577regulatedstabilizationofbrainderivedneurotrophicfactor |