Cargando…
Respiratory Motion Prediction Using Deep Convolutional Long Short-Term Memory Network
BACKGROUND: Pulmonary movements during radiation therapy can cause damage to healthy tissues. It is necessary to adapt treatment planning based on tumor motion to avoid damage to healthy tissues. A range of approaches has been proposed to monitor the issue. A treatment planning based on fourdimensio...
Autores principales: | Nabavi, Shahabedin, Abdoos, Monireh, Moghaddam, Mohsen Ebrahimi, Mohammadi, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359959/ https://www.ncbi.nlm.nih.gov/pubmed/32676442 http://dx.doi.org/10.4103/jmss.JMSS_38_19 |
Ejemplares similares
-
Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach
por: Rostampour, Nima, et al.
Publicado: (2018) -
Medical imaging and computational image analysis in COVID-19 diagnosis: A review
por: Nabavi, Shahabedin, et al.
Publicado: (2021) -
DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction
por: Guo, Yanbu, et al.
Publicado: (2019) -
A Semi-Supervised Method for Tumor Segmentation in Mammogram Images
por: Azary, Hanie, et al.
Publicado: (2020) -
Prediction and Diagnosis of Respiratory Disease by Combining Convolutional Neural Network and Bi-directional Long Short-Term Memory Methods
por: Li, Li, et al.
Publicado: (2022)