Cargando…
Identification of novel biomarkers correlated with prostate cancer progression by an integrated bioinformatic analysis
Prostate cancer (PCa) is a highly aggressive malignant tumor and the biological mechanisms underlying its progression remain unclear. We performed weighted gene co-expression network analysis in PCa dataset from the Cancer Genome Atlas database to identify the key module and key genes related to the...
Autores principales: | Ma, Zhifang, Wang, Jianming, Ding, Lingyan, Chen, Yujun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360283/ https://www.ncbi.nlm.nih.gov/pubmed/32664150 http://dx.doi.org/10.1097/MD.0000000000021158 |
Ejemplares similares
-
Bioinformatics analysis of the clinical relevance of CDCA gene family in prostate cancer
por: Gu, Peng, et al.
Publicado: (2022) -
Interferon-inducible protein 16 may be a biomarker and prognostic factor in renal cell carcinoma by bioinformatics analysis
por: Yu, Baozhong, et al.
Publicado: (2021) -
Safety of transrectal ultrasound-guided prostate biopsy in patients receiving aspirin: An update meta-analysis including 3373 patients
por: Chen, Di, et al.
Publicado: (2021) -
Comprehensive analysis of biomarkers for prostate cancer based on weighted gene co-expression network analysis
por: Chen, Xuan, et al.
Publicado: (2020) -
Efficacy and tolerability of doxazosin gastro-intestinal therapeutic system versus tamsulosin in patients with lower urinary tract symptoms associated with benign prostatic hyperplasia: A systematic review and meta-analysis
por: Guo, Jianming, et al.
Publicado: (2021)