Cargando…

Force–frequency relationship during fatiguing contractions of rat medial gastrocnemius muscle

The force–frequency relationship presents the amount of force a muscle can produce as a function of the frequency of activation. During repetitive muscular contractions, fatigue and potentiation may both impact the resultant contractile response. However, both the apparent fatigue observed, and the...

Descripción completa

Detalles Bibliográficos
Autores principales: MacDougall, Keenan B., Devrome, Andrea N., Kristensen, Anders M., MacIntosh, Brian R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360560/
https://www.ncbi.nlm.nih.gov/pubmed/32665563
http://dx.doi.org/10.1038/s41598-020-68392-6
Descripción
Sumario:The force–frequency relationship presents the amount of force a muscle can produce as a function of the frequency of activation. During repetitive muscular contractions, fatigue and potentiation may both impact the resultant contractile response. However, both the apparent fatigue observed, and the potential for activity-dependent potentiation can be affected by the frequency of activation. Thus, we wanted to explore the effects that repetitive stimulation had on the force–frequency relationship. The force–frequency relationship of the rat medial gastrocnemius muscle was investigated during consecutive bouts of increasing fatigue with 20 to 100 Hz stimulation. Force was measured prior to the fatiguing protocol, during each of three levels of fatigue, and after 30 min of recovery. Force at each frequency was quantified relative to the pre-fatigued 100 Hz contractions, as well as the percentage reduction of force from the pre-fatigued level at a given frequency. We observed less reduction in force at low frequencies compared to high frequencies, suggesting an interplay of fatigue and potentiation, in which potentiation can “protect” against fatigue in a frequency-dependent manner. The exact mechanism of fatigue is unknown, however the substantial reduction of force at high frequency suggests a role for reduced force per cross-bridge.