Cargando…
Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts
Symbolic regression (SR) is an approach of interpretable machine learning for building mathematical formulas that best fit certain datasets. In this work, SR is used to guide the design of new oxide perovskite catalysts with improved oxygen evolution reaction (OER) activities. A simple descriptor, μ...
Autores principales: | Weng, Baicheng, Song, Zhilong, Zhu, Rilong, Yan, Qingyu, Sun, Qingde, Grice, Corey G., Yan, Yanfa, Yin, Wan-Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360597/ https://www.ncbi.nlm.nih.gov/pubmed/32665539 http://dx.doi.org/10.1038/s41467-020-17263-9 |
Ejemplares similares
-
Identifying interactions in omics data for clinical biomarker discovery using symbolic regression
por: Christensen, Niels Johan, et al.
Publicado: (2022) -
Structural Dynamics
Descriptors for Metal Halide Perovskites
por: Liang, Xia, et al.
Publicado: (2023) -
Symbolic regression of generative network models
por: Menezes, Telmo, et al.
Publicado: (2014) -
Regression Models for Symbolic Interval-Valued Variables
por: Chacón, Jose Emmanuel, et al.
Publicado: (2021) -
Descriptor for Hydrogen Evolution Catalysts Based on the Bulk Band Structure
Effect
por: Xu, Qiunan, et al.
Publicado: (2020)