Cargando…
Machine learning accurate exchange and correlation functionals of the electronic density
Density functional theory (DFT) is the standard formalism to study the electronic structure of matter at the atomic scale. In Kohn–Sham DFT simulations, the balance between accuracy and computational cost depends on the choice of exchange and correlation functional, which only exists in approximate...
Autores principales: | Dick, Sebastian, Fernandez-Serra, Marivi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360771/ https://www.ncbi.nlm.nih.gov/pubmed/32665540 http://dx.doi.org/10.1038/s41467-020-17265-7 |
Ejemplares similares
-
Machine learning accurately predicts food exchange list and the exchangeable portion
por: Hernández-Hernández, David Jovani, et al.
Publicado: (2023) -
Simple and Accurate Exchange Energy for Density Functional Theory
por: Chachiyo, Teepanis, et al.
Publicado: (2020) -
Pure non-local machine-learned density functional theory for electron correlation
por: Margraf, Johannes T., et al.
Publicado: (2021) -
Exact exchange-correlation potentials from ground-state electron densities
por: Kanungo, Bikash, et al.
Publicado: (2019) -
Machine learned features from density of states for accurate adsorption energy prediction
por: Fung, Victor, et al.
Publicado: (2021)