Cargando…

ZnO Nanowire-Anchored Microfluidic Device With Herringbone Structure Fabricated by Maskless Photolithography

The integration of nanomaterials in microfluidic devices has emerged as a new research paradigm. Microfluidic devices composed of ZnO nanowires have been developed for the collection of urine extracellular vesicles (EVs) at high efficiency and in situ extraction of various microRNAs (miRNAs). The de...

Descripción completa

Detalles Bibliográficos
Autores principales: Sooriyaarachchi, Dilshan, Maharubin, Shahrima, Tan, George Z
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361484/
https://www.ncbi.nlm.nih.gov/pubmed/32704232
http://dx.doi.org/10.1177/1179597220941431
Descripción
Sumario:The integration of nanomaterials in microfluidic devices has emerged as a new research paradigm. Microfluidic devices composed of ZnO nanowires have been developed for the collection of urine extracellular vesicles (EVs) at high efficiency and in situ extraction of various microRNAs (miRNAs). The devices can be used for diagnosing various diseases, including kidney diseases and cancers. A major research need for developing micro total analysis systems is to enhance extraction efficiency. This article presents a novel fabrication method for a herringbone-patterned microfluidic device anchored with ZnO nanowire arrays. The substrates with herringbone patterns were created by maskless photolithography. The ZnO nanowire arrays were grown on the substrates by chemical bathing. The patterned design was to introduce turbulent flows as opposed to laminar flow in traditional devices to increase the mixing and contact of the urine sample with ZnO nanowires. The device showed reduced flow rates compared with conventional planar microfluidic channels and successfully extracted urine EV-encapsulated miRNAs.