Cargando…
Resource Allocation to Massive Internet of Things in LoRaWANs
A long-range wide area network (LoRaWAN) adapts the ALOHA network concept for channel access, resulting in packet collisions caused by intra- and inter-spreading factor (SF) interference. This leads to a high packet loss ratio. In LoRaWAN, each end device (ED) increments the SF after every two conse...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361687/ https://www.ncbi.nlm.nih.gov/pubmed/32384656 http://dx.doi.org/10.3390/s20092645 |
_version_ | 1783559393378304000 |
---|---|
author | Farhad, Arshad Kim, Dae-Ho Pyun, Jae-Young |
author_facet | Farhad, Arshad Kim, Dae-Ho Pyun, Jae-Young |
author_sort | Farhad, Arshad |
collection | PubMed |
description | A long-range wide area network (LoRaWAN) adapts the ALOHA network concept for channel access, resulting in packet collisions caused by intra- and inter-spreading factor (SF) interference. This leads to a high packet loss ratio. In LoRaWAN, each end device (ED) increments the SF after every two consecutive failed retransmissions, thus forcing the EDs to use a high SF. When numerous EDs switch to the highest SF, the network loses its advantage of orthogonality. Thus, the collision probability of the ED packets increases drastically. In this study, we propose two SF allocation schemes to enhance the packet success ratio by lowering the impact of interference. The first scheme, called the channel-adaptive SF recovery algorithm, increments or decrements the SF based on the retransmission of the ED packets, indicating the channel status in the network. The second approach allocates SF to EDs based on ED sensitivity during the initial deployment. These schemes are validated through extensive simulations by considering the channel interference in both confirmed and unconfirmed modes of LoRaWAN. Through simulation results, we show that the SFs have been adaptively applied to each ED, and the proposed schemes enhance the packet success delivery ratio as compared to the typical SF allocation schemes. |
format | Online Article Text |
id | pubmed-7361687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73616872020-07-21 Resource Allocation to Massive Internet of Things in LoRaWANs Farhad, Arshad Kim, Dae-Ho Pyun, Jae-Young Sensors (Basel) Article A long-range wide area network (LoRaWAN) adapts the ALOHA network concept for channel access, resulting in packet collisions caused by intra- and inter-spreading factor (SF) interference. This leads to a high packet loss ratio. In LoRaWAN, each end device (ED) increments the SF after every two consecutive failed retransmissions, thus forcing the EDs to use a high SF. When numerous EDs switch to the highest SF, the network loses its advantage of orthogonality. Thus, the collision probability of the ED packets increases drastically. In this study, we propose two SF allocation schemes to enhance the packet success ratio by lowering the impact of interference. The first scheme, called the channel-adaptive SF recovery algorithm, increments or decrements the SF based on the retransmission of the ED packets, indicating the channel status in the network. The second approach allocates SF to EDs based on ED sensitivity during the initial deployment. These schemes are validated through extensive simulations by considering the channel interference in both confirmed and unconfirmed modes of LoRaWAN. Through simulation results, we show that the SFs have been adaptively applied to each ED, and the proposed schemes enhance the packet success delivery ratio as compared to the typical SF allocation schemes. MDPI 2020-05-06 /pmc/articles/PMC7361687/ /pubmed/32384656 http://dx.doi.org/10.3390/s20092645 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Farhad, Arshad Kim, Dae-Ho Pyun, Jae-Young Resource Allocation to Massive Internet of Things in LoRaWANs |
title | Resource Allocation to Massive Internet of Things in LoRaWANs |
title_full | Resource Allocation to Massive Internet of Things in LoRaWANs |
title_fullStr | Resource Allocation to Massive Internet of Things in LoRaWANs |
title_full_unstemmed | Resource Allocation to Massive Internet of Things in LoRaWANs |
title_short | Resource Allocation to Massive Internet of Things in LoRaWANs |
title_sort | resource allocation to massive internet of things in lorawans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361687/ https://www.ncbi.nlm.nih.gov/pubmed/32384656 http://dx.doi.org/10.3390/s20092645 |
work_keys_str_mv | AT farhadarshad resourceallocationtomassiveinternetofthingsinlorawans AT kimdaeho resourceallocationtomassiveinternetofthingsinlorawans AT pyunjaeyoung resourceallocationtomassiveinternetofthingsinlorawans |