Cargando…
Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler
Improving thermo-mechanical characteristics of polymers can efficiently promote their applications in heat exchangers and thermal management. However, a feasible way to enhance the thermo-mechanical property of bulk polymers at low filler content still remains to be explored. Here, we propose mixing...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361691/ https://www.ncbi.nlm.nih.gov/pubmed/32486186 http://dx.doi.org/10.3390/polym12061255 |
_version_ | 1783559394334605312 |
---|---|
author | Zhang, Bo Liang, Yunmin Liu, Biwei Liu, Wei Liu, Zhichun |
author_facet | Zhang, Bo Liang, Yunmin Liu, Biwei Liu, Wei Liu, Zhichun |
author_sort | Zhang, Bo |
collection | PubMed |
description | Improving thermo-mechanical characteristics of polymers can efficiently promote their applications in heat exchangers and thermal management. However, a feasible way to enhance the thermo-mechanical property of bulk polymers at low filler content still remains to be explored. Here, we propose mixing high length-diameter ratio filler such as carbon nanotube (CNT), boron nitride (BN) nanotube, and copper (Cu) nanowire, in the woven polymer matrix to meet the purpose. Through molecular dynamics (MD) simulation, the thermal properties of three woven polymers including woven polyethylene (PE), woven poly (p-phenylene) (PPP), and woven polyacetylene (PA) are investigated. Besides, using woven PE as a polymer matrix, three polymer nanocomposites, namely PE-CNT, PE-BN, and PE-Cu, are constructed by mixing CNT, BN nanotube, and Cu nanowire respectively, whose thermo-mechanical characteristics are compared via MD simulation. Morphology and phonons spectra analysis are conducted to reveal the underlying mechanisms. Furthermore, impacts of electron-phonon coupling and electrical field on the thermal conductivity of PE-Cu are uncovered via two temperature model MD simulation. Classical theoretical models are modified to predict the effects of filler and matrix on the thermal conductivity of polymer nanocomposites. This work can provide useful guidelines for designing thermally conductive bulk polymers and polymer nanocomposites. |
format | Online Article Text |
id | pubmed-7361691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73616912020-07-21 Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler Zhang, Bo Liang, Yunmin Liu, Biwei Liu, Wei Liu, Zhichun Polymers (Basel) Article Improving thermo-mechanical characteristics of polymers can efficiently promote their applications in heat exchangers and thermal management. However, a feasible way to enhance the thermo-mechanical property of bulk polymers at low filler content still remains to be explored. Here, we propose mixing high length-diameter ratio filler such as carbon nanotube (CNT), boron nitride (BN) nanotube, and copper (Cu) nanowire, in the woven polymer matrix to meet the purpose. Through molecular dynamics (MD) simulation, the thermal properties of three woven polymers including woven polyethylene (PE), woven poly (p-phenylene) (PPP), and woven polyacetylene (PA) are investigated. Besides, using woven PE as a polymer matrix, three polymer nanocomposites, namely PE-CNT, PE-BN, and PE-Cu, are constructed by mixing CNT, BN nanotube, and Cu nanowire respectively, whose thermo-mechanical characteristics are compared via MD simulation. Morphology and phonons spectra analysis are conducted to reveal the underlying mechanisms. Furthermore, impacts of electron-phonon coupling and electrical field on the thermal conductivity of PE-Cu are uncovered via two temperature model MD simulation. Classical theoretical models are modified to predict the effects of filler and matrix on the thermal conductivity of polymer nanocomposites. This work can provide useful guidelines for designing thermally conductive bulk polymers and polymer nanocomposites. MDPI 2020-05-30 /pmc/articles/PMC7361691/ /pubmed/32486186 http://dx.doi.org/10.3390/polym12061255 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Bo Liang, Yunmin Liu, Biwei Liu, Wei Liu, Zhichun Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title | Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_full | Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_fullStr | Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_full_unstemmed | Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_short | Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_sort | enhancing the thermo-mechanical property of polymer by weaving and mixing high length–diameter ratio filler |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361691/ https://www.ncbi.nlm.nih.gov/pubmed/32486186 http://dx.doi.org/10.3390/polym12061255 |
work_keys_str_mv | AT zhangbo enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT liangyunmin enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT liubiwei enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT liuwei enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT liuzhichun enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller |