Cargando…
EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques †
Analysis of electroencephalogram (EEG) signals is essential because it is an efficient method to diagnose neurological brain disorders. In this work, a single system is developed to diagnose one or two neurological diseases at the same time (two-class mode and three-class mode). For this purpose, di...
Autores principales: | Alturki, Fahd A., AlSharabi, Khalil, Abdurraqeeb, Akram M., Aljalal, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361958/ https://www.ncbi.nlm.nih.gov/pubmed/32354161 http://dx.doi.org/10.3390/s20092505 |
Ejemplares similares
-
Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques
por: Aljalal, Majid, et al.
Publicado: (2022) -
EEG-based clinical decision support system for Alzheimer's disorders diagnosis using EMD and deep learning techniques
por: AlSharabi, Khalil, et al.
Publicado: (2023) -
Parkinson’s Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques
por: Aljalal, Majid, et al.
Publicado: (2022) -
EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN
por: Djemal, Ridha, et al.
Publicado: (2017) -
Ripples in mathematics: the discrete wavelet transform
por: Jensen, Arne, et al.
Publicado: (2001)