Cargando…
The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition
The present article adequately supports a twofold objective. On one hand, the study of the dynamic mechanical behavior of polypropylene/polyamide-6 blends modified by a novel compatibilizer was the objective. This was previously obtained by chemical modification of an atactic polypropylene polymeriz...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361966/ https://www.ncbi.nlm.nih.gov/pubmed/32471039 http://dx.doi.org/10.3390/polym12061216 |
_version_ | 1783559421745430528 |
---|---|
author | García-Martínez, Jesús-María Collar, Emilia P. |
author_facet | García-Martínez, Jesús-María Collar, Emilia P. |
author_sort | García-Martínez, Jesús-María |
collection | PubMed |
description | The present article adequately supports a twofold objective. On one hand, the study of the dynamic mechanical behavior of polypropylene/polyamide-6 blends modified by a novel compatibilizer was the objective. This was previously obtained by chemical modification of an atactic polypropylene polymerization waste. On the other hand, the accurate predictions of these properties in the experimental space scanned was the objective. As a novelty, this compatibilizer contains grafts rather than just maleated ones. Therefore, it consists precisely of an atactic polymer containing succinic anhydride (SA) bridges and both backbone and terminal grafted succinyl-fluorescein groups (SFSA) attached to the atactic backbone (aPP-SFSA). Therefore, it contains 6.2% of total grafting (2.5% as SA and 3.7% as SF), which is equivalent to 6.2 × 10(−4) g·mol(−1). This interfacial agent was uniquely designed and obtained by the authors themselves. Essentially, this article focuses on how the beneficial effect of both PA6 and aPP-SFSA varies the elastic (E’) and the viscous (E’’) behavior of the iPP/aPP-SFSA/PA6 blend at the iPP glass transition. Thus, we accurately measured the Dynamic Mechanical Analysis (DMA) parameters (E’, E’’) at this specific point considering it represents an extremely unfavorable scenario for the interfacial modifier due to mobility restrictions. Hence, this evidences the real interfacial modifications caused by aPP-SFSA to the iPP/PA6 system. Even more, and since each of the necessary components in the blend typically interacts with one another, we employed a Box–Wilson experimental design by its marked resemblance to the “agent-based models”. In this manner, we obtained complex algorithms accurately forecasting the dynamic mechanical behavior of the blends for all the composition range of the iPP/aPP-SFSA/PA6 system at the glass transition of iPP. |
format | Online Article Text |
id | pubmed-7361966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73619662020-07-21 The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition García-Martínez, Jesús-María Collar, Emilia P. Polymers (Basel) Article The present article adequately supports a twofold objective. On one hand, the study of the dynamic mechanical behavior of polypropylene/polyamide-6 blends modified by a novel compatibilizer was the objective. This was previously obtained by chemical modification of an atactic polypropylene polymerization waste. On the other hand, the accurate predictions of these properties in the experimental space scanned was the objective. As a novelty, this compatibilizer contains grafts rather than just maleated ones. Therefore, it consists precisely of an atactic polymer containing succinic anhydride (SA) bridges and both backbone and terminal grafted succinyl-fluorescein groups (SFSA) attached to the atactic backbone (aPP-SFSA). Therefore, it contains 6.2% of total grafting (2.5% as SA and 3.7% as SF), which is equivalent to 6.2 × 10(−4) g·mol(−1). This interfacial agent was uniquely designed and obtained by the authors themselves. Essentially, this article focuses on how the beneficial effect of both PA6 and aPP-SFSA varies the elastic (E’) and the viscous (E’’) behavior of the iPP/aPP-SFSA/PA6 blend at the iPP glass transition. Thus, we accurately measured the Dynamic Mechanical Analysis (DMA) parameters (E’, E’’) at this specific point considering it represents an extremely unfavorable scenario for the interfacial modifier due to mobility restrictions. Hence, this evidences the real interfacial modifications caused by aPP-SFSA to the iPP/PA6 system. Even more, and since each of the necessary components in the blend typically interacts with one another, we employed a Box–Wilson experimental design by its marked resemblance to the “agent-based models”. In this manner, we obtained complex algorithms accurately forecasting the dynamic mechanical behavior of the blends for all the composition range of the iPP/aPP-SFSA/PA6 system at the glass transition of iPP. MDPI 2020-05-27 /pmc/articles/PMC7361966/ /pubmed/32471039 http://dx.doi.org/10.3390/polym12061216 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article García-Martínez, Jesús-María Collar, Emilia P. The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition |
title | The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition |
title_full | The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition |
title_fullStr | The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition |
title_full_unstemmed | The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition |
title_short | The Role of a Succinyl Fluorescein-Succinic Anhydride Grafted Atactic Polypropylene on the Dynamic Mechanical Properties of Polypropylene/Polyamide-6 Blends at the Polypropylene Glass Transition |
title_sort | role of a succinyl fluorescein-succinic anhydride grafted atactic polypropylene on the dynamic mechanical properties of polypropylene/polyamide-6 blends at the polypropylene glass transition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361966/ https://www.ncbi.nlm.nih.gov/pubmed/32471039 http://dx.doi.org/10.3390/polym12061216 |
work_keys_str_mv | AT garciamartinezjesusmaria theroleofasuccinylfluoresceinsuccinicanhydridegraftedatacticpolypropyleneonthedynamicmechanicalpropertiesofpolypropylenepolyamide6blendsatthepolypropyleneglasstransition AT collaremiliap theroleofasuccinylfluoresceinsuccinicanhydridegraftedatacticpolypropyleneonthedynamicmechanicalpropertiesofpolypropylenepolyamide6blendsatthepolypropyleneglasstransition AT garciamartinezjesusmaria roleofasuccinylfluoresceinsuccinicanhydridegraftedatacticpolypropyleneonthedynamicmechanicalpropertiesofpolypropylenepolyamide6blendsatthepolypropyleneglasstransition AT collaremiliap roleofasuccinylfluoresceinsuccinicanhydridegraftedatacticpolypropyleneonthedynamicmechanicalpropertiesofpolypropylenepolyamide6blendsatthepolypropyleneglasstransition |