Cargando…

Degradable Poly(ethylene oxide)-Like Plasma Polymer Films Used for the Controlled Release of Nisin

Poly(ethylene oxide) (PEO)-like thin films were successfully prepared by plasma-assisted vapor thermal deposition (PAVTD). PEO powders with a molar weight (Mw) between 1500 g/mol and 600,000 g/mol were used as bulk precursors. The effect of Mw on the structural and surface properties was analyzed fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kousal, Jaroslav, Sedlaříková, Jana, Kolářová-Rašková, Zuzana, Krtouš, Zdeněk, Kučerová, Liliana, Hurajová, Anna, Vaidulych, Mykhailo, Hanuš, Jan, Lehocký, Marián
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362230/
https://www.ncbi.nlm.nih.gov/pubmed/32492821
http://dx.doi.org/10.3390/polym12061263
Descripción
Sumario:Poly(ethylene oxide) (PEO)-like thin films were successfully prepared by plasma-assisted vapor thermal deposition (PAVTD). PEO powders with a molar weight (Mw) between 1500 g/mol and 600,000 g/mol were used as bulk precursors. The effect of Mw on the structural and surface properties was analyzed for PEO films prepared at a lower plasma power. Fourier transform (FTIR-ATR) spectroscopy showed that the molecular structure was well preserved regardless of the Mw of the precursors. The stronger impact of the process conditions (the presence/absence of plasma) was proved. Molecular weight polydispersity, as well as wettability, increased in the samples prepared at 5 W. The influence of deposition plasma power (0–30 W) on solubility and permeation properties was evaluated for a bulk precursor of Mw 1500 g/mol. The rate of thickness loss after immersion in water was found to be tunable in this way, with the films prepared at the highest plasma power showing higher stability. The effect of plasma power deposition conditions was also shown during the permeability study. Prepared PEO films were used as a cover, and permeation layers for biologically active nisin molecule and a controlled release of this bacteriocin into water was achieved.