Cargando…
Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application
Poly(lactic) acid nanocomposites filled with graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (MWCNTs) are studied, varying the filler size, shape, and content within 1.5–12 wt.%. The effects of the intrinsic characteristics of nanofillers and structural organization of nanocomposites on...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362261/ https://www.ncbi.nlm.nih.gov/pubmed/32466410 http://dx.doi.org/10.3390/polym12061208 |
_version_ | 1783559469645430784 |
---|---|
author | Kotsilkova, Rumiana Ivanov, Evgeni Georgiev, Vladimir Ivanova, Radost Menseidov, Dzhihan Batakliev, Todor Angelov, Verislav Xia, Hesheng Chen, Yinghong Bychanok, Dzmitry Kuzhir, Polina Di Maio, Rosa Silvestre, Clara Cimmino, Sossio |
author_facet | Kotsilkova, Rumiana Ivanov, Evgeni Georgiev, Vladimir Ivanova, Radost Menseidov, Dzhihan Batakliev, Todor Angelov, Verislav Xia, Hesheng Chen, Yinghong Bychanok, Dzmitry Kuzhir, Polina Di Maio, Rosa Silvestre, Clara Cimmino, Sossio |
author_sort | Kotsilkova, Rumiana |
collection | PubMed |
description | Poly(lactic) acid nanocomposites filled with graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (MWCNTs) are studied, varying the filler size, shape, and content within 1.5–12 wt.%. The effects of the intrinsic characteristics of nanofillers and structural organization of nanocomposites on mechanical, electrical, thermal, and electromagnetic properties enhancement are investigated. Three essential rheological parameters are identified, which determine rheology–structure–property relations in nanocomposites: the degree of dispersion, percolation threshold, and interfacial interactions. Above the percolation threshold, depending on the degree of dispersion, three structural organizations are observed in nanocomposites: homogeneous network (MWCNTs), segregated network (MWCNTs), and aggregated structure (GNPs). The rheological and structural parameters depend strongly on the type, size, shape, specific surface area, and functionalization of the fillers. Consequently, the homogeneous and segregated network structures resulted in a significant enhancement of tensile mechanical properties and a very low electrical percolation threshold, in contrast to the aggregated structure. The high filler density in the polymer and the low number of graphite walls in MWCNTs are found to be determinant for the remarkable shielding efficiency (close to 100%) of nanocomposites. Moreover, the 2D shaped GNPs predominantly enhance the thermal conductivity compared to the 1D shaped MWCNTs. The proposed essential structural parameters may be successfully used for the design of polymer nanocomposites with enhanced multifunctional properties for 3D printing applications. |
format | Online Article Text |
id | pubmed-7362261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73622612020-07-21 Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application Kotsilkova, Rumiana Ivanov, Evgeni Georgiev, Vladimir Ivanova, Radost Menseidov, Dzhihan Batakliev, Todor Angelov, Verislav Xia, Hesheng Chen, Yinghong Bychanok, Dzmitry Kuzhir, Polina Di Maio, Rosa Silvestre, Clara Cimmino, Sossio Polymers (Basel) Article Poly(lactic) acid nanocomposites filled with graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (MWCNTs) are studied, varying the filler size, shape, and content within 1.5–12 wt.%. The effects of the intrinsic characteristics of nanofillers and structural organization of nanocomposites on mechanical, electrical, thermal, and electromagnetic properties enhancement are investigated. Three essential rheological parameters are identified, which determine rheology–structure–property relations in nanocomposites: the degree of dispersion, percolation threshold, and interfacial interactions. Above the percolation threshold, depending on the degree of dispersion, three structural organizations are observed in nanocomposites: homogeneous network (MWCNTs), segregated network (MWCNTs), and aggregated structure (GNPs). The rheological and structural parameters depend strongly on the type, size, shape, specific surface area, and functionalization of the fillers. Consequently, the homogeneous and segregated network structures resulted in a significant enhancement of tensile mechanical properties and a very low electrical percolation threshold, in contrast to the aggregated structure. The high filler density in the polymer and the low number of graphite walls in MWCNTs are found to be determinant for the remarkable shielding efficiency (close to 100%) of nanocomposites. Moreover, the 2D shaped GNPs predominantly enhance the thermal conductivity compared to the 1D shaped MWCNTs. The proposed essential structural parameters may be successfully used for the design of polymer nanocomposites with enhanced multifunctional properties for 3D printing applications. MDPI 2020-05-26 /pmc/articles/PMC7362261/ /pubmed/32466410 http://dx.doi.org/10.3390/polym12061208 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kotsilkova, Rumiana Ivanov, Evgeni Georgiev, Vladimir Ivanova, Radost Menseidov, Dzhihan Batakliev, Todor Angelov, Verislav Xia, Hesheng Chen, Yinghong Bychanok, Dzmitry Kuzhir, Polina Di Maio, Rosa Silvestre, Clara Cimmino, Sossio Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application |
title | Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application |
title_full | Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application |
title_fullStr | Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application |
title_full_unstemmed | Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application |
title_short | Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application |
title_sort | essential nanostructure parameters to govern reinforcement and functionality of poly(lactic) acid nanocomposites with graphene and carbon nanotubes for 3d printing application |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362261/ https://www.ncbi.nlm.nih.gov/pubmed/32466410 http://dx.doi.org/10.3390/polym12061208 |
work_keys_str_mv | AT kotsilkovarumiana essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT ivanovevgeni essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT georgievvladimir essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT ivanovaradost essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT menseidovdzhihan essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT bataklievtodor essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT angelovverislav essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT xiahesheng essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT chenyinghong essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT bychanokdzmitry essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT kuzhirpolina essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT dimaiorosa essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT silvestreclara essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication AT cimminosossio essentialnanostructureparameterstogovernreinforcementandfunctionalityofpolylacticacidnanocompositeswithgrapheneandcarbonnanotubesfor3dprintingapplication |