Cargando…

Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating

The traditional two-component waterborne polyurethane coating system cannot effectively inhibit the undesirable side reaction between polyisocyanate and water during curing hardening. It is difficult to avoid the microbubbles formed by this reaction during the film formation process, which severely...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruitao, Li, Chunxiang, Jiang, Zhaohua, Wang, Zhijiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362264/
https://www.ncbi.nlm.nih.gov/pubmed/32527026
http://dx.doi.org/10.3390/polym12061318
Descripción
Sumario:The traditional two-component waterborne polyurethane coating system cannot effectively inhibit the undesirable side reaction between polyisocyanate and water during curing hardening. It is difficult to avoid the microbubbles formed by this reaction during the film formation process, which severely degrades the appearance and decreases the performance of the film. Therefore, the addition of an amphiphilic Linear-Dendritic carbosilane Block Surfactant (LDBS) to the hardener can physically separate the polyisocyanate emulsion from water through self-assembly. The bubble-free film thickness (BFFT) of the two-component waterborne polyurethane coating in this study is approximately 1.5-fold greater than commercial waterborne polyurethane coatings in today’s coating industry. Fourier transform infrared spectroscopy (FT-IR) varied the effectiveness of LDBS for inhibition of the undesirable side reaction. The successful application of the waterborne polyurethane coating with LDBS on the 600 km/h high-speed maglev train provides a technical solution for large-scale industrialization of waterborne polyurethane coating and complete replacement of solvent polyurethane coating.