Cargando…

Review of fabrication methods of large-area transparent graphene electrodes for industry

Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and...

Descripción completa

Detalles Bibliográficos
Autores principales: Mustonen, Petri, Mackenzie, David M. A., Lipsanen, Harri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Higher Education Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362318/
https://www.ncbi.nlm.nih.gov/pubmed/36641556
http://dx.doi.org/10.1007/s12200-020-1011-5
Descripción
Sumario:Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5, slightly over the minimum required for industry of 35, while CVD reaches as high as 419. [Image: see text]