Cargando…
Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass
BACKGROUND: The current production of bioethanol based on lignocellulosic biomass (LCB) highly depends on thermostable enzymes and extremophiles owing to less risk of contamination. Thermophilic bacterial cellulases are preferred over fungi due to their higher growth rate, presence of complex multi-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362481/ https://www.ncbi.nlm.nih.gov/pubmed/32684977 http://dx.doi.org/10.1186/s13068-020-01764-2 |
_version_ | 1783559500096077824 |
---|---|
author | Ganesan, Meena Mathivani Vinayakamoorthy, Remitha Thankappan, Sugitha Muniraj, Iniyakumar Uthandi, Sivakumar |
author_facet | Ganesan, Meena Mathivani Vinayakamoorthy, Remitha Thankappan, Sugitha Muniraj, Iniyakumar Uthandi, Sivakumar |
author_sort | Ganesan, Meena |
collection | PubMed |
description | BACKGROUND: The current production of bioethanol based on lignocellulosic biomass (LCB) highly depends on thermostable enzymes and extremophiles owing to less risk of contamination. Thermophilic bacterial cellulases are preferred over fungi due to their higher growth rate, presence of complex multi-enzymes, stability, and enhanced bioconversion efficiency. Corncob, underutilized biomass, ensures energy conservation due to high lignocellulosic and more fermentable sugar content. In the present study, the thermophilic bacterium Bacillus aerius CMCPS1, isolated from the thermal springs of Manikaran, Himachal Pradesh, India, was characterized in terms of its activity, stability, and hydrolytic capacity. A two-step process comprising: (i) a combined strategy of hydrodynamic cavitation reaction (HCR)-coupled enzymatic (LccH at 6.5 U) pretreatment for delignification and (ii) subsequent hydrolysis of pre-treated (HCR-LccH) corncob biomass (CCB) using a thermostable cocktail of CMCPS1 was adopted to validate the efficiency of the process. Some of the parameters studied include lignin reduction, cellulose increase, and saccharification efficiency. RESULT: Among the five isolates obtained by in situ enrichment on various substrates, B. aerius CMCPS1, isolated from hot springs, exhibited the maximum hydrolytic activity of 4.11. The GH activity of the CMCPS1 strain under submerged fermentation revealed maximum filter paper activity (FPA) and endoglucanase activity of 4.36 IU mL(−1) and 2.98 IU mL(−1), respectively, at 44 h. Similarly, the isolate produced exoglucanase and β-glucosidase with an activity of 1.76 IU mL(−1) and 1.23 IU mL(−1) at 48 h, respectively. More specifically, the enzyme endo-1,4-β-d glucanase E.C.3.2.1.4 (CMCase) produced by B. aerius CMCPS1 displayed wider stability to pH (3–9) and temperature (30–90 °C) than most fungal cellulases. Similarly, the activity of CMCase increased in the presence of organic solvents (118% at 30% acetone v/v). The partially purified CMCase from the culture supernatant of CMCPS1 registered 64% yield with twofold purification. The zymogram and SDS-PAGE analyses further confirmed the CMCase activity with an apparent molecular mass of 70 kDa. The presence of genes specific to cellulases, such as cellulose-binding domain CelB, confirmed the presence of GH family 46 and β-glucosidase activity (GH3). The multifunctional cellulases of CMCPS1 were evaluated for their saccharification efficiency on laccase (LccH, a fungal laccase from Hexagonia hirta MSF2)-pretreated corncob in a HCR. The lignin and hemicelluloses removal efficiency of HCR-LccH was 54.1 and 6.57%, respectively, with an increase in cellulose fraction (42.25%). The saccharification efficiency of 55% was achieved with CMCPS1 multifunctional cellulases at 50 °C and pH 5.0. CONCLUSION: The multifunctional cellulase complex of B. aerius CMCPS1 is a potential biocatalyst for application in lignocellulosic biomass-based biorefineries. The saccharification ability of HCR-LccH-pretreated corncob at elevated temperatures would be an advantage for biofuel production from lignocellulosic biomass. |
format | Online Article Text |
id | pubmed-7362481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-73624812020-07-17 Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass Ganesan, Meena Mathivani Vinayakamoorthy, Remitha Thankappan, Sugitha Muniraj, Iniyakumar Uthandi, Sivakumar Biotechnol Biofuels Research BACKGROUND: The current production of bioethanol based on lignocellulosic biomass (LCB) highly depends on thermostable enzymes and extremophiles owing to less risk of contamination. Thermophilic bacterial cellulases are preferred over fungi due to their higher growth rate, presence of complex multi-enzymes, stability, and enhanced bioconversion efficiency. Corncob, underutilized biomass, ensures energy conservation due to high lignocellulosic and more fermentable sugar content. In the present study, the thermophilic bacterium Bacillus aerius CMCPS1, isolated from the thermal springs of Manikaran, Himachal Pradesh, India, was characterized in terms of its activity, stability, and hydrolytic capacity. A two-step process comprising: (i) a combined strategy of hydrodynamic cavitation reaction (HCR)-coupled enzymatic (LccH at 6.5 U) pretreatment for delignification and (ii) subsequent hydrolysis of pre-treated (HCR-LccH) corncob biomass (CCB) using a thermostable cocktail of CMCPS1 was adopted to validate the efficiency of the process. Some of the parameters studied include lignin reduction, cellulose increase, and saccharification efficiency. RESULT: Among the five isolates obtained by in situ enrichment on various substrates, B. aerius CMCPS1, isolated from hot springs, exhibited the maximum hydrolytic activity of 4.11. The GH activity of the CMCPS1 strain under submerged fermentation revealed maximum filter paper activity (FPA) and endoglucanase activity of 4.36 IU mL(−1) and 2.98 IU mL(−1), respectively, at 44 h. Similarly, the isolate produced exoglucanase and β-glucosidase with an activity of 1.76 IU mL(−1) and 1.23 IU mL(−1) at 48 h, respectively. More specifically, the enzyme endo-1,4-β-d glucanase E.C.3.2.1.4 (CMCase) produced by B. aerius CMCPS1 displayed wider stability to pH (3–9) and temperature (30–90 °C) than most fungal cellulases. Similarly, the activity of CMCase increased in the presence of organic solvents (118% at 30% acetone v/v). The partially purified CMCase from the culture supernatant of CMCPS1 registered 64% yield with twofold purification. The zymogram and SDS-PAGE analyses further confirmed the CMCase activity with an apparent molecular mass of 70 kDa. The presence of genes specific to cellulases, such as cellulose-binding domain CelB, confirmed the presence of GH family 46 and β-glucosidase activity (GH3). The multifunctional cellulases of CMCPS1 were evaluated for their saccharification efficiency on laccase (LccH, a fungal laccase from Hexagonia hirta MSF2)-pretreated corncob in a HCR. The lignin and hemicelluloses removal efficiency of HCR-LccH was 54.1 and 6.57%, respectively, with an increase in cellulose fraction (42.25%). The saccharification efficiency of 55% was achieved with CMCPS1 multifunctional cellulases at 50 °C and pH 5.0. CONCLUSION: The multifunctional cellulase complex of B. aerius CMCPS1 is a potential biocatalyst for application in lignocellulosic biomass-based biorefineries. The saccharification ability of HCR-LccH-pretreated corncob at elevated temperatures would be an advantage for biofuel production from lignocellulosic biomass. BioMed Central 2020-07-14 /pmc/articles/PMC7362481/ /pubmed/32684977 http://dx.doi.org/10.1186/s13068-020-01764-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Ganesan, Meena Mathivani Vinayakamoorthy, Remitha Thankappan, Sugitha Muniraj, Iniyakumar Uthandi, Sivakumar Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass |
title | Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass |
title_full | Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass |
title_fullStr | Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass |
title_full_unstemmed | Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass |
title_short | Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass |
title_sort | thermotolerant glycosyl hydrolases-producing bacillus aerius cmcps1 and its saccharification efficiency on hcr-laccase (lcch)-pretreated corncob biomass |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362481/ https://www.ncbi.nlm.nih.gov/pubmed/32684977 http://dx.doi.org/10.1186/s13068-020-01764-2 |
work_keys_str_mv | AT ganesanmeena thermotolerantglycosylhydrolasesproducingbacillusaeriuscmcps1anditssaccharificationefficiencyonhcrlaccaselcchpretreatedcorncobbiomass AT mathivanivinayakamoorthyremitha thermotolerantglycosylhydrolasesproducingbacillusaeriuscmcps1anditssaccharificationefficiencyonhcrlaccaselcchpretreatedcorncobbiomass AT thankappansugitha thermotolerantglycosylhydrolasesproducingbacillusaeriuscmcps1anditssaccharificationefficiencyonhcrlaccaselcchpretreatedcorncobbiomass AT munirajiniyakumar thermotolerantglycosylhydrolasesproducingbacillusaeriuscmcps1anditssaccharificationefficiencyonhcrlaccaselcchpretreatedcorncobbiomass AT uthandisivakumar thermotolerantglycosylhydrolasesproducingbacillusaeriuscmcps1anditssaccharificationefficiencyonhcrlaccaselcchpretreatedcorncobbiomass |