Cargando…
PFBNet: a priori-fused boosting method for gene regulatory network inference
BACKGROUND: Inferring gene regulatory networks (GRNs) from gene expression data remains a challenge in system biology. In past decade, numerous methods have been developed for the inference of GRNs. It remains a challenge due to the fact that the data is noisy and high dimensional, and there exists...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362553/ https://www.ncbi.nlm.nih.gov/pubmed/32664870 http://dx.doi.org/10.1186/s12859-020-03639-7 |
Sumario: | BACKGROUND: Inferring gene regulatory networks (GRNs) from gene expression data remains a challenge in system biology. In past decade, numerous methods have been developed for the inference of GRNs. It remains a challenge due to the fact that the data is noisy and high dimensional, and there exists a large number of potential interactions. RESULTS: We present a novel method, namely priori-fused boosting network inference method (PFBNet), to infer GRNs from time-series expression data by using the non-linear model of Boosting and the prior information (e.g., the knockout data) fusion scheme. Specifically, PFBNet first calculates the confidences of the regulation relationships using the boosting-based model, where the information about the accumulation impact of the gene expressions at previous time points is taken into account. Then, a newly defined strategy is applied to fuse the information from the prior data by elevating the confidences of the regulation relationships from the corresponding regulators. CONCLUSIONS: The experiments on the benchmark datasets from DREAM challenge as well as the E.coli datasets show that PFBNet achieves significantly better performance than other state-of-the-art methods (Jump3, GEINE3-lag, HiDi, iRafNet and BiXGBoost). |
---|