Cargando…
PFBNet: a priori-fused boosting method for gene regulatory network inference
BACKGROUND: Inferring gene regulatory networks (GRNs) from gene expression data remains a challenge in system biology. In past decade, numerous methods have been developed for the inference of GRNs. It remains a challenge due to the fact that the data is noisy and high dimensional, and there exists...
Autores principales: | Che, Dandan, Guo, Shun, Jiang, Qingshan, Chen, Lifei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362553/ https://www.ncbi.nlm.nih.gov/pubmed/32664870 http://dx.doi.org/10.1186/s12859-020-03639-7 |
Ejemplares similares
-
Gene regulatory network inference using PLS-based methods
por: Guo, Shun, et al.
Publicado: (2016) -
ENNET: inferring large gene regulatory networks from expression data using gradient boosting
por: Sławek, Janusz, et al.
Publicado: (2013) -
BRANE Cut: biologically-related a priori network enhancement with graph cuts for gene regulatory network inference
por: Pirayre, Aurélie, et al.
Publicado: (2015) -
A computational framework for gene regulatory network inference that combines multiple methods and datasets
por: Gupta, Rita, et al.
Publicado: (2011) -
Inferring the conservative causal core of gene regulatory networks
por: Altay, Gökmen, et al.
Publicado: (2010)