Cargando…
Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases
BACKGROUND: The healthcare sector is an interesting target for fraudsters. The availability of a great amount of data makes it possible to tackle this issue with the adoption of data mining techniques, making the auditing process more efficient and effective. This research has the objective of devel...
Autores principales: | Massi, Michela Carlotta, Ieva, Francesca, Lettieri, Emanuele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362640/ https://www.ncbi.nlm.nih.gov/pubmed/32664923 http://dx.doi.org/10.1186/s12911-020-01143-9 |
Ejemplares similares
-
Application of microarray outlier detection methodology to psychiatric research
por: Ernst, Carl, et al.
Publicado: (2008) -
Detecting medical prescriptions suspected of fraud using an unsupervised data mining algorithm
por: Haddad Soleymani, Mohammad, et al.
Publicado: (2018) -
Unsupervised Outlier Detection in IOT Using Deep VAE
por: Gouda, Walaa, et al.
Publicado: (2022) -
Spatial cluster detection using dynamic programming
por: Sverchkov, Yuriy, et al.
Publicado: (2012) -
Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach
por: Macedo Hair, Gleicy, et al.
Publicado: (2019)