Cargando…
Machine learning-based segmentation of ischemic penumbra by using diffusion tensor metrics in a rat model
BACKGROUND: Recent trials have shown promise in intra-arterial thrombectomy after the first 6–24 h of stroke onset. Quick and precise identification of the salvageable tissue is essential for successful stroke management. In this study, we examined the feasibility of machine learning (ML) approaches...
Autores principales: | Kuo, Duen-Pang, Kuo, Po-Chih, Chen, Yung-Chieh, Kao, Yu-Chieh Jill, Lee, Ching-Yen, Chung, Hsiao-Wen, Chen, Cheng-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362663/ https://www.ncbi.nlm.nih.gov/pubmed/32664906 http://dx.doi.org/10.1186/s12929-020-00672-9 |
Ejemplares similares
-
Differentiation of the Infarct Core from Ischemic Penumbra within the First 4.5 Hours, Using Diffusion Tensor Imaging-Derived Metrics: A Rat Model
por: Kuo, Duen-Pang, et al.
Publicado: (2017) -
Diffusion Tensor-Derived Properties of Benign Oligemia, True “at Risk” Penumbra, and Infarct Core during the First Three Hours of Stroke Onset: A Rat Model
por: Chiu, Fang-Ying, et al.
Publicado: (2018) -
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
por: Kong, Youyong, et al.
Publicado: (2014) -
Co-optimization Learning Network for MRI Segmentation of Ischemic Penumbra Tissues
por: Liu, Liangliang, et al.
Publicado: (2021) -
Altered Resting-State fMRI Signals in Acute Stroke Patients with Ischemic Penumbra
por: Tsai, Yuan-Hsiung, et al.
Publicado: (2014)