Cargando…
A proof-of-concept study of extracting patient histories for rare/intractable diseases from social media
The amount of content on social media platforms such as Twitter is expanding rapidly. Simultaneously, the lack of patient information seriously hinders the diagnosis and treatment of rare/intractable diseases. However, these patient communities are especially active on social media. Data from social...
Autores principales: | Yamaguchi, Atsuko, Queralt-Rosinach, Núria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362943/ https://www.ncbi.nlm.nih.gov/pubmed/32634871 http://dx.doi.org/10.5808/GI.2020.18.2.e17 |
Ejemplares similares
-
DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases
por: Queralt-Rosinach, Núria, et al.
Publicado: (2016) -
Social Media Mining Toolkit (SMMT)
por: Tekumalla, Ramya, et al.
Publicado: (2020) -
Development and validation of MicrobEx: an open-source package for microbiology culture concept extraction
por: Eickelberg, Garrett, et al.
Publicado: (2022) -
Semantic reclassification of the UMLS concepts
por: Fan, Jung-Wei, et al.
Publicado: (2008) -
BioCaster in 2021: automatic disease outbreaks detection from global news media
por: Meng, Zaiqiao, et al.
Publicado: (2022)