Cargando…
Deep learning decodes the principles of differential gene expression
Identifying the molecular mechanisms that control differential gene expression (DE) is a major goal of basic and disease biology. We develop a systems biology model to predict DE, and mine the biological basis of the factors that influence predicted gene expression, in order to understand how it may...
Autores principales: | Tasaki, Shinya, Gaiteri, Chris, Mostafavi, Sara, Wang, Yanling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363043/ https://www.ncbi.nlm.nih.gov/pubmed/32671330 http://dx.doi.org/10.1038/s42256-020-0201-6 |
Ejemplares similares
-
Multi-omic Directed Networks Describe Features of Gene Regulation in Aged Brains and Expand the Set of Genes Driving Cognitive Decline
por: Tasaki, Shinya, et al.
Publicado: (2018) -
Benchmarking of deep neural networks for predicting personal gene expression from DNA sequence highlights shortcomings
por: Sasse, Alexander, et al.
Publicado: (2023) -
The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer's Dementia
por: Tasaki, Shinya, et al.
Publicado: (2018) -
Gene expression and DNA methylation are extensively coordinated with MRI-based brain microstructural characteristics
por: Gaiteri, Chris, et al.
Publicado: (2018) -
Inferring protein expression changes from mRNA in Alzheimer’s dementia using deep neural networks
por: Tasaki, Shinya, et al.
Publicado: (2022)