Cargando…
The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support
The objective is to study the design method of roadway support and provide technical support for coal mining and other mining methods that need deep roadway excavation. Through literature review, the occurrence, development mechanism and influencing factors of surrounding loose rock zones of roadway...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363087/ https://www.ncbi.nlm.nih.gov/pubmed/32667926 http://dx.doi.org/10.1371/journal.pone.0234071 |
Sumario: | The objective is to study the design method of roadway support and provide technical support for coal mining and other mining methods that need deep roadway excavation. Through literature review, the occurrence, development mechanism and influencing factors of surrounding loose rock zones of roadways are analyzed. A method of detecting is selected according to the characteristics of surrounding rock loosening. Knowledge of elastoplastic mechanics is used to theoretically study the failure mechanism of surrounding rock in deep re-mining roadways. Based on the artificial neural network prediction model (ANN), the surrounding rock is classified and a support network model of the decision system is constructed. After the design of roadway support, a sharp change of vault subsidence normally occurs within about 7 days after excavation, and the total subsidence is 14 mm. In the following month, deformation is slow, subsidence is small, and it is basically stable after one month. The curve of the vault subsidence rate shows that the vault subsidence rate is less than or equal to 1mm/d after 7 days. The convergence rate is also less than 1 mm/d after 7 days. There are two cave mouths AB and CD, and the convergence value of AB is 6.47mm, CD is 10.26mm: CD is slightly larger than AB, and it is close to stable one month later. It is essentially consistent with the time of vault settlement and stability, and the amount of deformation is approximately the same. This shows that, with the advance of the working face, the displacement of the surrounding rock in the section away from the working face will gradually decrease and the surrounding rock will be stable. The stability time of surrounding rock displacement of the portal section is the same as that of vault subsidence under the initial support, and the amount of deformation is approximately the same, indicating that the support parameters and construction methods are reasonable. |
---|