Cargando…

Apoptotic cells induce CD103 expression and immunoregulatory function in myeloid dendritic cell precursors through integrin α(v) and TGF-β activation

In the mammalian gut CD103+ve myeloid DCs are known to suppress inflammation threatened by luminal bacteria, but stimuli driving DC precursor maturation towards this beneficial phenotype are incompletely understood. We isolated CD11+ve DCs from mesenteric lymph nodes (MLNs) of healthy mice; CD103+ve...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ailiang, Paidassi, Helena, Lacy-Hulbert, Adam, Savill, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363096/
https://www.ncbi.nlm.nih.gov/pubmed/32667911
http://dx.doi.org/10.1371/journal.pone.0232307
Descripción
Sumario:In the mammalian gut CD103+ve myeloid DCs are known to suppress inflammation threatened by luminal bacteria, but stimuli driving DC precursor maturation towards this beneficial phenotype are incompletely understood. We isolated CD11+ve DCs from mesenteric lymph nodes (MLNs) of healthy mice; CD103+ve DCs were 8–24 fold more likely than CD103-ve DCs to exhibit extensive of prior phagocytosis of apoptotic intestinal epithelial cells. However, CD103+ve and CD103-ve MLN DCs exhibited similar ex vivo capacity to ingest apoptotic cells, indicating that apoptotic cells might drive immature DC maturation towards the CD103+ve phenotype. When cultured with apoptotic cells, myeloid DC precursors isolated from murine bone marrow and characterised as lineage-ve CD103-ve, displayed enhanced expression of CD103 and β8 integrin and acquired increased capacity to induce T regulatory lymphocytes (Tregs) after 7d in vitro. However, DC precursors isolated from α(v)-tie2 mice lacking α(v) integrins in the myeloid line exhibited reduced binding of apoptotic cells and complete deficiency in the capacity of apoptotic cells and/or latent TGF-β1 to enhance CD103 expression in culture, whereas active TGF-β1 increased DC precursor CD103 expression irrespective of α(v) expression. Fluorescence microscopy revealed clustering of α(v) integrin chains and latent TGF-β1 at points of contact between DC precursors and apoptotic cells. We conclude that myeloid DC precursors can deploy α(v) integrin to orchestrate binding of apoptotic cells, activation of latent TGF-β1 and acquisition of the immunoregulatory CD103+ve β8+ve DC phenotype. This implies that a hitherto unrecognised consequence of apoptotic cell interaction with myeloid phagocytes is programming that prevents inflammation.