Cargando…
Stable isotope analysis of multiple tissues from Hawaiian honeycreepers indicates elevational movement
We have limited knowledge of the patterns, causes, and prevalence of elevational migration despite observations of seasonal movements of animals along elevational gradients in montane systems worldwide. While a third of extant Hawaiian landbird species are estimated to be elevational migrants this a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363098/ https://www.ncbi.nlm.nih.gov/pubmed/32667954 http://dx.doi.org/10.1371/journal.pone.0235752 |
Sumario: | We have limited knowledge of the patterns, causes, and prevalence of elevational migration despite observations of seasonal movements of animals along elevational gradients in montane systems worldwide. While a third of extant Hawaiian landbird species are estimated to be elevational migrants this assumption is based primarily on early naturalist’s observations with limited empirical evidence. In this study, we compared stable hydrogen isotopes (δ(2)H) of metabolically inert (feathers) and active (blood plasma, red blood cells) tissues collected from the same individual to determine if present day populations of Hawaiian honeycreepers undergo elevational movements to track areas of seasonally high flower bloom that constitute significant food resources. We also measured stable carbon isotopes (δ(13)C) and stable nitrogen isotopes (δ(15)N) to examine potential changes in diet between time periods. We found that the majority of ‘apapane (Himatione sanguinea) and Hawaiʻi ʻamakihi (Chlorodrepanis virens) captured at high elevation, high bloom flowering sites in the fall were not year-round residents at the capture locations, but had molted their feathers at lower elevations presumably in the summer after breeding. δ(2)H values of feathers for all individuals sampled were higher than blood plasma isotope values after accounting for differences in tissue-specific discrimination. We did not find a difference in the propensity of elevational movement between ‘apapane and Hawaiʻi ‘amakihi, even though the ‘amakihi is considered more sedentary. However, consistent with a more generalist diet, δ(15)N values indicated that Hawaiʻi ʻamakihi had a more diverse diet across trophic levels than ʻapapane, and a greater reliance on nectar in the fall. We demonstrate that collecting multiple tissue samples, which grow at different rates or time periods, from a single individual can provide insights into elevational movements of Hawaiian honeycreepers over an extended time period. |
---|