Cargando…
Global PAC Bounds for Learning Discrete Time Markov Chains
Learning models from observations of a system is a powerful tool with many applications. In this paper, we consider learning Discrete Time Markov Chains (DTMC), with different methods such as frequency estimation or Laplace smoothing. While models learnt with such methods converge asymptotically tow...
Autores principales: | Bazille, Hugo, Genest, Blaise, Jegourel, Cyrille, Sun, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363184/ http://dx.doi.org/10.1007/978-3-030-53291-8_17 |
Ejemplares similares
-
PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models
por: Banerjee, Imon, et al.
Publicado: (2021) -
Discrete-time Markov chains: two-time-scale methods and applications
por: Yin, G George, et al.
Publicado: (2005) -
Discrete-Time Markov Chain Modelling of the Ontario Air Quality Health Index
por: Holmes, Jason, et al.
Publicado: (2021) -
Limit Behaviour of Upper and Lower Expected Time Averages in Discrete-Time Imprecise Markov Chains
por: T’Joens, Natan, et al.
Publicado: (2020) -
Applications of Discrete-time Markov Chains and Poisson Processes to Air Pollution Modeling and Studies
por: Rodrigues, Eliane Regina, et al.
Publicado: (2013)