Cargando…

Crystal structure, chemical reactivity, kinetic and thermodynamic studies of new ligand derived from 4-hydroxycoumarin: Interaction with SARS-CoV-2

Currently, Covid-19 pandemic infects staggering number of people around the globe and causes a high rate of mortality. In order to fight this disease, a new coumarin derivative ligand (4-[(pyridin-3-ylmethyl) amino]-2H-chromen-2-one) (L(TA)) has been synthesized and characterized by single-crystal X...

Descripción completa

Detalles Bibliográficos
Autores principales: Ait-Ramdane-Terbouche, Chafia, Abdeldjebar, Hasnia, Terbouche, Achour, Lakhdari, Houria, Bachari, Khaldoun, Roisnel, Thierry, Hauchard, Didier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363612/
https://www.ncbi.nlm.nih.gov/pubmed/32834114
http://dx.doi.org/10.1016/j.molstruc.2020.128918
Descripción
Sumario:Currently, Covid-19 pandemic infects staggering number of people around the globe and causes a high rate of mortality. In order to fight this disease, a new coumarin derivative ligand (4-[(pyridin-3-ylmethyl) amino]-2H-chromen-2-one) (L(TA)) has been synthesized and characterized by single-crystal X-ray diffraction, NMR, ATR, UV-Visible and cyclic voltammetry. Chemical reactivity, kinetic and thermodynamic studies were investigated using DFT method. The possible binding mode between L(TA) and Main protease (Mpro) of SARS-CoV-2 and their reactivity were studied using molecular docking simulation. Single crystal X-ray diffraction showed that L(TA) crystallizes in a monoclinic system with P2(1) space group. The reactivity descriptors such as nucleophilic index confirm that L(TA) is more nucleophile, inducing complexation with binding species like biomolecules. The kinetic and thermodynamic parameters showed that the mechanism of crystal formation is moderately exothermic. The binding energy of the SARS-CoV-2/Mpro-L(TA) complex and the calculated inhibition constant using docking simulation showed that the active L(TA) molecule has the ability to inhibit SARS-CoV-2.