Cargando…
Rapid detection of microbiota cell type diversity using machine-learned classification of flow cytometry data
The study of complex microbial communities typically entails high-throughput sequencing and downstream bioinformatics analyses. Here we expand and accelerate microbiota analysis by enabling cell type diversity quantification from multidimensional flow cytometry data using a supervised machine learni...
Autores principales: | Özel Duygan, Birge D., Hadadi, Noushin, Babu, Ambrin Farizah, Seyfried, Markus, van der Meer, Jan R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363847/ https://www.ncbi.nlm.nih.gov/pubmed/32669688 http://dx.doi.org/10.1038/s42003-020-1106-y |
Ejemplares similares
-
Assessing Biodegradability of Chemical Compounds from Microbial Community Growth Using Flow Cytometry
por: Özel Duygan, B. D., et al.
Publicado: (2021) -
Biotransformation of Chemicals at the Water–Sediment
Interface—Toward a Robust Simulation Study Setup
por: Seller, Carolin, et al.
Publicado: (2021) -
Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition
por: Zarei, Iman, et al.
Publicado: (2022) -
Using Impedance
Flow Cytometry for Rapid Viability
Classification of Heat-Treated Bacteria
por: Bertelsen, Christian Vinther, et al.
Publicado: (2023) -
Contribution of Flow Cytometry to Acute Leukemia Classification in Tunisia
por: Feki, S., et al.
Publicado: (2000)