Cargando…
Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping
Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology. Machine learning may address this, but requires large datasets linking GREs to their quantitative function. However, experimental methods to generate such datasets are either application-specific or technic...
Autores principales: | Höllerer, Simon, Papaxanthos, Laetitia, Gumpinger, Anja Cathrin, Fischer, Katrin, Beisel, Christian, Borgwardt, Karsten, Benenson, Yaakov, Jeschek, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363850/ https://www.ncbi.nlm.nih.gov/pubmed/32669542 http://dx.doi.org/10.1038/s41467-020-17222-4 |
Ejemplares similares
-
CASMAP: detection of statistically significant combinations of SNPs in association mapping
por: Llinares-López, Felipe, et al.
Publicado: (2019) -
Ultradeep characterisation of translational sequence determinants refutes rare-codon hypothesis and unveils quadruplet base pairing of initiator tRNA and transcript
por: Höllerer, Simon, et al.
Publicado: (2023) -
Prediction of cancer driver genes through network-based moment propagation of mutation scores
por: Gumpinger, Anja C, et al.
Publicado: (2020) -
networkGWAS: a network-based approach to discover genetic associations
por: Muzio, Giulia, et al.
Publicado: (2023) -
Network-guided search for genetic heterogeneity between gene pairs
por: Gumpinger, Anja C, et al.
Publicado: (2020)