Cargando…

Tuning the hysteresis of a metal-insulator transition via lattice compatibility

Structural phase transitions serve as the basis for many functional applications including shape memory alloys (SMAs), switches based on metal-insulator transitions (MITs), etc. In such materials, lattice incompatibility between transformed and parent phases often results in a thermal hysteresis, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Y. G., Lee, S., Yu, H. S., Zhang, H. R., Liang, Y. J., Zavalij, P. Y., Chen, X., James, R. D., Bendersky, L. A., Davydov, A. V., Zhang, X. H., Takeuchi, I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363867/
https://www.ncbi.nlm.nih.gov/pubmed/32669544
http://dx.doi.org/10.1038/s41467-020-17351-w
_version_ 1783559726134460416
author Liang, Y. G.
Lee, S.
Yu, H. S.
Zhang, H. R.
Liang, Y. J.
Zavalij, P. Y.
Chen, X.
James, R. D.
Bendersky, L. A.
Davydov, A. V.
Zhang, X. H.
Takeuchi, I.
author_facet Liang, Y. G.
Lee, S.
Yu, H. S.
Zhang, H. R.
Liang, Y. J.
Zavalij, P. Y.
Chen, X.
James, R. D.
Bendersky, L. A.
Davydov, A. V.
Zhang, X. H.
Takeuchi, I.
author_sort Liang, Y. G.
collection PubMed
description Structural phase transitions serve as the basis for many functional applications including shape memory alloys (SMAs), switches based on metal-insulator transitions (MITs), etc. In such materials, lattice incompatibility between transformed and parent phases often results in a thermal hysteresis, which is intimately tied to degradation of reversibility of the transformation. The non-linear theory of martensite suggests that the hysteresis of a martensitic phase transformation is solely determined by the lattice constants, and the conditions proposed for geometrical compatibility have been successfully applied to minimizing the hysteresis in SMAs. Here, we apply the non-linear theory to a correlated oxide system (V(1−x)W(x)O(2)), and show that the hysteresis of the MIT in the system can be directly tuned by adjusting the lattice constants of the phases. The results underscore the profound influence structural compatibility has on intrinsic electronic properties, and indicate that the theory provides a universal guidance for optimizing phase transforming materials.
format Online
Article
Text
id pubmed-7363867
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-73638672020-07-20 Tuning the hysteresis of a metal-insulator transition via lattice compatibility Liang, Y. G. Lee, S. Yu, H. S. Zhang, H. R. Liang, Y. J. Zavalij, P. Y. Chen, X. James, R. D. Bendersky, L. A. Davydov, A. V. Zhang, X. H. Takeuchi, I. Nat Commun Article Structural phase transitions serve as the basis for many functional applications including shape memory alloys (SMAs), switches based on metal-insulator transitions (MITs), etc. In such materials, lattice incompatibility between transformed and parent phases often results in a thermal hysteresis, which is intimately tied to degradation of reversibility of the transformation. The non-linear theory of martensite suggests that the hysteresis of a martensitic phase transformation is solely determined by the lattice constants, and the conditions proposed for geometrical compatibility have been successfully applied to minimizing the hysteresis in SMAs. Here, we apply the non-linear theory to a correlated oxide system (V(1−x)W(x)O(2)), and show that the hysteresis of the MIT in the system can be directly tuned by adjusting the lattice constants of the phases. The results underscore the profound influence structural compatibility has on intrinsic electronic properties, and indicate that the theory provides a universal guidance for optimizing phase transforming materials. Nature Publishing Group UK 2020-07-15 /pmc/articles/PMC7363867/ /pubmed/32669544 http://dx.doi.org/10.1038/s41467-020-17351-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Liang, Y. G.
Lee, S.
Yu, H. S.
Zhang, H. R.
Liang, Y. J.
Zavalij, P. Y.
Chen, X.
James, R. D.
Bendersky, L. A.
Davydov, A. V.
Zhang, X. H.
Takeuchi, I.
Tuning the hysteresis of a metal-insulator transition via lattice compatibility
title Tuning the hysteresis of a metal-insulator transition via lattice compatibility
title_full Tuning the hysteresis of a metal-insulator transition via lattice compatibility
title_fullStr Tuning the hysteresis of a metal-insulator transition via lattice compatibility
title_full_unstemmed Tuning the hysteresis of a metal-insulator transition via lattice compatibility
title_short Tuning the hysteresis of a metal-insulator transition via lattice compatibility
title_sort tuning the hysteresis of a metal-insulator transition via lattice compatibility
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363867/
https://www.ncbi.nlm.nih.gov/pubmed/32669544
http://dx.doi.org/10.1038/s41467-020-17351-w
work_keys_str_mv AT liangyg tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT lees tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT yuhs tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT zhanghr tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT liangyj tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT zavalijpy tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT chenx tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT jamesrd tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT benderskyla tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT davydovav tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT zhangxh tuningthehysteresisofametalinsulatortransitionvialatticecompatibility
AT takeuchii tuningthehysteresisofametalinsulatortransitionvialatticecompatibility